
1

Class 12 1

Class 12 CS540

Gregg Vesonder
Stevens Institute of Technology

© 2005 Gregg Vesonder

Class 12 2

Roadmap- Class 12
• Clarifications from last class
• Log Book
• HCI
• Open Source
• Microsoft
• Games
• Reading this week:
• Reading next week - finish Brooks, chapter 15 - Epilogue, Parnas

paper: Parnas, D.L. and Wurges, H. “Response to undesired events in
software systems.” In D. M. Hoffman and D.M. Weiss, Software
fundamentals: Collected papers by D.L. Parnas, 2001.

2

Class 12 3

Key Dates

• December 12th, the final

Class 12 4

Clarifications

• Attention-hang in there

3

Class 12 5

Logbook

• The Dog and the Bone - on closure

Class 12 6

Mental Rotation

• Task is to decide whether figures are same or
different, reaction time is measured, given a
bunch of problems, from Shepard and
Metzler(1971).

4

Class 12 7

Typical Results

Class 12 8

Knowledge in the World and in the Head

“the user and the designer
communicate only through the
system itself”

DESIGNER

SYSTEM

USER

DESIGN MODEL USER’S MODEL

SYSTEM IMAGE •Gulf of execution - mismatch
between users intention and
allowable actions
•Gulf of evaluation - mismatch
between systems representation
and user’s expectations

The Design Challenge

5

Class 12 9

Interaction Styles

Clarification dialog, more
keystrokes, contest is hard,
unpredictable

Relieves burden of learning syntaxNatural
Language

Poor error handling, long
training, memorization

Flexible, power users, user initiative, creation of
macros (customizing)

Command
Language

Consumes screen spaceSimple data entry, modest training, convenient
assistance, use of form management tools

Form Completion

Danger of many menus, slows
frequent users, consumes
screen space, requires rapid
display rate

Shortens learning, reduces keystrokes, structures
decision making, can use dialog management tools,
easy support of error handling

Menu Selection

Hard to develop, requires
graphics display & pointing
device

Visually presents task concepts, easy learning, easy
retention, avoids errors, encourages exploration,
high subjective satisfaction

Direct
Manipulation

DisadvantagesAdvantagesStyle

Class 12 10

Physical abilities and surroundings
• Anthropometry - basic data about human dimensions (range

of dimensions)
– Not only static (size of hand) but also dynamic, reach distance

while seated, speed of finger presses, strength of lifting, …
• Human Factors engineering of computer work stations

– Work surface and display support height
– Clearance under work surface for legs
– Work surface width and depth
– Adjustability of heights and angles for chairs and work

surfaces
– Posture adjustments, arm rests, foot rests, chair coasters
– Lumination levels, glare, flicker, noise, air temperature,

movement and humidity

6

Class 12 11

Relative Dimensions of Average Human Body

Class 12 12

Standing Posture Data

7

Class 12 13

HCI Systems Approach

• Proper functionality
– Task analysis is central
– Avoid excessive functionality (palm pilot vs Microsoft)

• Reliability, availability, data integrity
– Building/destroying users trust in the system (data

integrity is #1) crash on me, but don’t lose my powerpoint
• Standardization integration, consistency and

portability
• Schedules and budget

Class 12 14

In Other Words

• Population
• Tasks
• Methods
• Techniques
• Evaluation
• Heuristics

8

Class 12 15

Relativity of Design
• Each user and each task should have precise objectives:

– Average time to learn
– Speed of performance
– Error rate by users
– Retention over time (frequency of use is a factor)
– Subjective satisfaction - surveys satisfaction scale

• Tradeoffs:
– lengthy learning -> better performance
– Rate of errors vs. speed of performance

Class 12 16

Why spend effort on the UI?
(redux)

• Increased efficiency
• Improved productivity
• Reduced errors
• Reduced training - strive for game like training
• Improved acceptance
• So evaluation determines how well we did

9

Class 12 17

Usability Characteristics
Evaluation

Efficiency
Learnability
Memorability
Errors/Safety
Satisfaction

Speed of performance
Time to learn
Retention over time
Rate of errors by users
Subjective satisfaction

Efficiency

Effectiveness

Satisfaction

NielsenSchneidermanISO 9241

Class 12 18

Evaluation
• Not only in course of design process but as part of the system - throughout

process, continually evaluate
• BEFORE: scenario based, manual based, story board based - evaluation as

prototyping, experimentation
• AFTER: (have a prepared baseline of all tasks in previous environment)

study and MEASURE how users are doing - in the beginning and at regular
intervals
– Casual interfaces - kiosks should go quickly: seconds to minutes
– Week on task interfaces - telemarketing: minutes to hours
– Month on task interfaces - help desk: days

• Observe the entire environment before and after for days
– Include what is on their desk, tacked to wall and interactions

• SATISFACTION AND JOY - what follows are some heuristics to get
there

10

Class 12 19

In Other Words

• Population
• Tasks
• Methods
• Techniques
• Evaluation
• Heuristics

Class 12 20

Heuristics on the User Interface
• If there’s a substantial UI component have full time UI person

involved from beginning plus artist/designer
– UI person is not converted developer

• Avoid Natural Language interfaces
• Understand the environment and the users and the types of users

– Auditory interface in high noise or long dialog text is not recommended
• Test it and observe - prototypes, user manuals, storyboards
• Do not stray too far from current interfaces, unless …revolution
• Do not be tempted by direct manipulation/”Matrix mode” unless

ample time and software/hardware - but be inventive

11

Class 12 21

More on UI
• Do automate!
• Do not ignore the users needs
• Do talk to the users
• Do understand your user population
• Do be predictable
• Do use common examples in documentation - Unix Man pages
• Do use designers/artists
• Do use paper, stickers, job aids, …
• Do consider Ergonomics
• Do consider special needs
• Joy is an important aspect
• One unsatisfied customer can hurt more than two satisfied customers can

help!

Class 12 22

B&Y Heuristics

• Simplicity
• Speak the user’s language
• Be consistent
• Minimize what users must

remember
• Design for flexibility and

efficiency
• Design aesthetics and

minimalist graphics

• Satisfaction
• Recognize the power of

chunking
• Predictability
• Screen layout
• Naturalness
• Structure progressive

levels of detail
• Navigation
• Safety

12

Class 12 23

Information Visualization

• Shneiderman and Plaisant
– Overview
– Zoom
– Filter
– Details on demand
– Relate - among items
– History
– Extract

Class 12 24

Visualization Example

13

Class 12 25

And So Much More

• Psychology of computer programming
• More on ethnography
• Psychology of online communities - Mail vs IM generations
• Computer supported cooperative work
• Psychology of embedded device interfaces
• Challenges of every new leap in technology
• …

Class 12 26

Open Source Software
Cathedral and the Bazaar

• Cathedral - commercial software world, bazaar -
linux and open source

• Key names:
– Richard Stallman - emacs, gnu, Free Software Foundation
– Linus Torvalds, linux, open source process, open source

license (General Public License (GPL), BSD, Perl’s
Artistic) License

– Larry Wall - PERL

14

Class 12 27

Flavor of Open Source
• Torvalds style - release early and often, delegate be very open -VERY

developer centric!
• Axiom 1 - Every (?) good work of software begins by scratching a

developer’s itch (Axioms do not conform to numbers in the paper)
• 2- Good programmers know what to write, great ones know what to rewrite

and reuse
– Constructive laziness

• 3-Plan to throw one away, you will anyhow
– You do not understand problem until after first time you

implement
• 4- If you have the right attitude interesting problems will find you
• 5- When you lose interest in a program, your last duty is to hand it off to a

competent successor

Class 12 28

Flavor of OS - 2
• 6- treating your users as codevelopers is your least hassle way to rapid code

improvement and effective debugging
– If you have that luxury
– Torvalds “too lazy to fail”

• 7- release early, often and listen to customers
– Released a new linux kernel in the early days more than once a day!

• 8- given a large enough beta tester and code developer base, almost every problem will
be characterized quickly and the fix obvious to someone
– Linus’ Law “Given enough eyeballs, all bugs are shallow”
– Delphi effect
– Debugging is parallelizable
– Brooks: more users find more bugs
– Non source aware users do not provide great bug reports

15

Class 12 29

Flavor of OS 3
• Team: Usually 1-3 core developers, beta testers and contributors

in the 100s
• 9- If you treat your beta testers as if they’re your most valuable

resource, they become it
• 10- the next best thing to having good ideas is recognizing good

ideas from users. Sometimes the latter is better
• 11-often the most striking and innovative solutions come from

realizing your concept of the problem was wrong
• 12 - Perfection (in design) Is achieved not when there is nothing to

add, but rather when there is nothing to take away, Antoine de
Saint-Exupery
– Debugging is not only parallelizable, so is development and exploration

of the design space!

Class 12 30

Flavor of OS 4

• 13 - any tool should be useful in the expected way
but a truly great tool lends itself to uses you
never expected

• 14 -International flavor of participants is a plus in
globalization (extract)

• 15-To solve an interesting problem start by
finding a problem that is interesting to you

16

Class 12 31

Preconditions for the Bazaar Style

• Hard to originate code in this style, test, debug, improve yes
– You need to have something running - attractor
– It has to run and convince others that it can evolve into

something neat in reasonable time
• Leader/coordinator of Open Source project does not need

to be a great designer but needs to recognize good ideas
from other folks:
– Robust and simple rather than cute and complicated
– Community’s internal market in reputation exerts subtle

pressure in self-selecting competent leaders
– A bazaar leader must have good people and communication skills

Class 12 32

Social Context for Open Source

• Evolution of software in the presence of a large, active community of users
• Programmer time is not fungible - small number of codevelopers obeys

Brooks communications links
• Programmers cannot be territorial about code, encourage others to look for

bugs and improvement XXP!
• “while coding remains an essentially solitary activity, the really great hacks

come from harnessing the material and brain power of entire communities”
• Internet helped
• Development of leadership style and set of cooperative customs
• Utility function of linux hackers is maximizing in their own eyes satisfaction

and reputation among peers and users
• Boring is essential - software and documentation
• Open source is fun - joy as an asset
• Not so easy as to be boring, not too hard to achieve!

17

Class 12 33

Homesteading the Noosphere

• Open Source culture: zealotry varies, hostility to commercial
software varies

• Open source must protect an unconditional right of any party
to modify (and redistribute modified versions of) open
source software

• Taboos of Open Source:
– Strong social pressure against forking projects
– Distributing changes to a project without cooperation of

moderators is frowned upon
– Removing a person’s name from the project history is not done

without the person’s explicit consent

Class 12 34

Ownership in Open Source

• Owner of the software project is the person who
has the exclusive right to distribute modified
versions

• How to own:
– Start the project - homesteading
– Have ownership handed to you - deed transfer
– Observe that a project needs work and owner has lost

interest- try to find owner to get to have ownership
handed to you - “adverse possession, moves on and
improves”

18

Class 12 35

Hacker Culture = Gift Culture

• Excludes crackers and warez d00dz - different
culture

• Not what you control but what you give away -
reputation among peers

• Along with sheer joy of making something work
• Craftsmanship model as a corollary - still linked to

reputation
• In hacker culture status is based on critical

judgment of peers

Class 12 36

On Reputation

• Ego is despised, yet system runs on it
• One’s work is one’s statement, no one attacks one’s technical

competence, emacs bugs not Stallman’s bugs
• More prestige in founding a project than working on an

existing one
• More prestige for innovative rather than me too
• Being carried in a major distribution (Red Hat, SuSE) is

prestigious
• Continued devotion to hard, boring work (debug, write doc) is

more praiseworthy than fun and easy hacks.

19

Class 12 37

Governance

• Project leader - codevelopers - contributors
• Apache has a voting committee
• PERL has rotating dictatorship among

codevelopers

Class 12 38

Open Source Resources

• www.opensource.org - jump off point, Halloween
papers

• SourceForge.net - project pages
• Freshmeat.net - products and product

announcements
• Slashdot.org - fun

20

Class 12 39

Microsoft’s Response
• The Halloween documents - response to Open Source, quotes

Raymond
• Considers Open Source a threat especially in server market (H II -

also in desktop)
• Commercial quality can be achieved!
• To target Open Source, you target a process not a product
• Open source is long term credible - you cannot FUD it!
• Implementation provides a high visibility showcase for OS
• Linux has done well in mission critical commercial environments
• Linux can win as long as services and protocols are commodities

Class 12 40

More Microsoft

• Current count 9 Halloween papers - not all from
Microsoft!

• From Halloween VIII - “First they ignore you,
then they laugh at you, then they fight you, then
you win” - Gandhi

• Halloween IX SCO + Microsoft??

21

Class 12 41

Revenge of the Hackers

• Again by Eric Raymond
• Linux was a watershed from parts to a working car
• How did the Linux community beat Brooks’ Law?
• Cathedral and Bazaar - provided language so they could improve

their “process”
– Hackers loved it around the world

• Netscape open sourcing their browser was “the shot heard round
the world”
– Failure would discredit open source
– Mozilla

Class 12 42

RH - 2

• Origin of “Open Source” and Open Source
Initiative

• Needed marketing and the “Free Software”
movement was a problem
– Free = no price & liberty
– Association of hostility to IP rights, communism and

radicalism was not mainstream IT
• Needed Positive Stereo types: 1) pragmatic tales,

2) high reliability, 3) lower cost (not free), and 4)
better features

22

Class 12 43

RH-3

• Top down not bottom up marketing to
CEOs/CTOs/CIOs

• Raymond as spokesperson - “sound challengingly
weird but convey an aura of honesty and
simplicity”

• More than Linux:
– Apache 50% of server market
– Perl
– Sendmail - dominant mail router

Class 12 44

RH-4

• O’Reilly and his company helped
• Key win -- Oracle and Informix offer linux ports, started

bandwagon
• Halloween Docs gave it credibility - Microsoft was concerned
• Titanic - rendered by a roomful of Linux boxes
• Beowulf - supercomputer on the cheap, Open Source on

cutting edge
• Red Hat, SuSE and the rest, proprietary Unix losing share
• Watch out for BSD
• Desktop versus server

23

Class 12 45

Open Source Landscape

• From Code
Reading by D.
Spinellis

1.9738JavaScript

1.9745Assembly

2.1835Unix Shell

2.3916Visual Basic

4.51,765Python

9.13,618Perl

11.24,433PHP

15.15,970Java

19.27,632C++

21.28,393C

% of Projects# of ProjectsLanguage

Class 12 46

Microsoft Development - Lucovsky

• NT: 6 guys from DEC, 1 guy from Microsoft
• Design goals for NT family:

– Portability - abstract away machine dependencies
– Reliability - nothing should be able to crash the OS
– Extensibility
– Compatibility
– Performance but all of the above are more important

• Design Workbook - written by engineers for engineers
– Every functional interface was defined and reviewed - small

teams essential
– Spread review duties and everyone shares culture

24

Class 12 47

Time to Big

• To scale a team you need to establish a culture
– Common way of evaluating designs, tradeoffs
– Common way of developing code
– Common way to establish ownership of problems

• Goal setting as foundation for the culture - hard as it grows
• Every decision made in the context of design goals
• Everyone owns all the code, so whenever something is busted

anyone has a right and duty to fix
– Works in small groups (< 150!)

• Sloppiness is not tolerated
• Accept that mistakes will happen

Class 12 48

NT Source Code Control System

• Internally developed, by a non-NT tools team - no
branch capability

• Small hard drive could hold whole tree (6M LOC),
10-12 source projects

• Easy to stay in synch
• Onto Win 2000 needed branching, (29M LOC), 180

source projects - full source, 50 gig, up to date
machine, 2 hours to sync

25

Class 12 49

NT Build

• 4 hours sync period, could check in code the other
20 hours

• Build lab syncs during 4 hour period (in morning)
and begins a complete build - 5 hours on 486/50

• Preliminary test is done then off to 4pm stress
test on ~100 machines

Class 12 50

Win 2000 Build

• No source tree changes w/o explicit permission
• Build lab approves ~100 changes each day and

manually syncs and builds
– A developer mistyping a build instruction can stop build

which stops 5000 people
• Build 8 hours on 4 way PIII Xeon with 50 gig disk

and 512K
• Build boot and baseline tested then 4pm stress

testing on 1000 machines

26

Class 12 51

Team Sizes

17001400Win2000

700800NT 4.0

325450NT 3.51

230300NT 3.5

140200NT 3.1

Test TeamDev TeamPRODUCT

Class 12 52

Defect Rates Data

10.2 hours15.340 min4Win2000,
1400

3.8 hours6.635 min3NT 4.0, 800

1.2 hours2.530 min2NT 3.51, 450

41 min1.625 min2NT 3.5, 300

20 min120 min2NT 3.1, 200

Total fix timeDefect/dayTime to
fix/defect

Defects/yr/
dev

Product team
size

27

Class 12 53

Game Development

• Roles of Game Development:
– Producer - person responsible for managing people and

processes responsible for the game
– Game Designer - overall vision of the game and maintaining it
– Level Designer - implements game using content creation tools

created by programmers and assets generated by artists
– Programmer - tool builder
– Game Graphic Artist - know current context but be very broad
– Much more “creative” based, developer as tool builder,

amenable to software process factoring in this large difference
– May (should) become more common

Class 12 54

Thought Problems

• You want to become part of the Open Source Movement - How
should you begin?

• What steps would be needed to change your current software
process to a process more similar to the Software Gaming
Industry?

28

Class 12 55

So Far

• Software Process Models, Software Project Planning (woosh!),
Requirements, Estimation, Risk Analysis, Multics case study,
Architecture Reviews, Questionnaire Design

• Software Quality Assurance, Configuration Management and
Testing, Architecture and Design, Software Engineering skills:
Problem Solving, meeting, stat, … (and finished Arch and Design)
and OO

• Lightweight Methodologies, XP, CHI and Human Factors, Part 1
• This Time: CHI and Human Factors Part 2, Open Source,

Microsoft, Gaming
• Next Time: Brooks, Reliability, Parnas, Formal Methods, Out

sourcing

Class 12 56

References
• Schneiderman, B. Designing the User Interface, (wait for

4th edition! - Spring 2004) Addison-Wesley
• Mental rotation: http://psychexps.olemiss.edu
• E.S. Raymond:

– The cathedral and the bazaar
– Homesteading the Noosphere
– Halloween papers

• Mark Lucovsky, “Windows a software engineering odyssey” -
build centric view

• Game Developers Association
• Body Chart:

http://www.mech.utah.edu/ergo/educate/safety_modules/c
td-anthropometry/

