Class 6 €5540

Gregg Vesonder
Stevens Institute of Technology

© 2005 Gregg Vesonder

Class 6

Roadmap- Class 6

Clarifications from last class
Log Book volunteer

Review of test

Configuration Management
Testing

Reading: BY Chapter 11

Reading next class: Brooks Chapters 7, 8, 9, 10 and BY 5, pp
223-247

Class 6

Clarifications

* Thought Problem

Class 6

Thought Problem

Your company does not have a Quality program, lately there
have been some issues with software Quality and your

Director has asked you to institute a program for your
company. What is your plan?

Class 6 4

Calendar -Key Dates

- November 7th - second test

* November 21st - log books due

- December 12th - final exam

Class 6

Logbook

* Your Entry
» Succession Planning

Class 6

Configuration Management
the Problem

Not a simple task!

- Different versions of software usually is in the field
during the life cycle

- Different parts of the team are on different versions of
the software and documents (see branching)

- The same release of a software product may have
multiple versions consisting of different combinations of
software components

Configuration management is both a development
and production issue, a life time issue

Class 6

Branches of Development

3rd Branch

1st Branch

‘ Original line of development

‘ 2nd Branch

vV V V V

From Collins-Sussman, et.al., 2005

Class 6

The Baseline

IEEE - "reviewed and agreed upon basis for further
development which can be changed only through formal
control procedures”

Contained in the baseline are configuration items: source,
objects, requirements

Configuration management maintains integrity of these
artifacts

Major error- retrace steps through code, design documents
and requirements specification -TRACEABILITY

Class 6

Workflow of CR (MR)

l Change Request

rejected

Investigate (R~ ——————

Notify CR owner

Change approved l

O
efe,-.r,ed

Prepare & sched

work package

Prioritized work package

Implement change

l Updated configuration items

Class 6

Request info from
CR owner

10

Configuration Management Tools

Manage the workflow of CRs

If item is o be changed, developer checks it out and item is
locked to other users

When item check back in revision history is stored
All versions are recoverable

Should be able to accommodate branching - necessary more times
than you think!

Configuration management tools are very sophisticated, keeps only
the changes, the deltas and the remarks, timestamps and who did
what - essential for Buildmeister and testers

New tools are change oriented release configuration is identified
by a baseline plus a set of changes.

Class 6 11

Configuration Management Plan

Main parts:
- Management:
- How project is organized
- Activities:
* Who is on CCB, what are their responsibilities

* What reports are required
- What data is collected and archived - IMPORTANT

- Schedules
- Resources
- Plan Management

Class 6

Software Testing

]

Testing is the last bastion of Quality - you can not "test in’
Quality however testing is a necessary but not sufficient
condition for Quality

Dijkstra "Testing can show the preesence of bugs but not
their absence!”

The Quality of the systems we deliver increasingly
determine the Quality of our existence

Good testing is at least as difficult as good design (with
asymmetric rewards)

Class 6

13

When to Test

NOW
Postponing testing for too long is a severe mistake.

Boehm- errors discovered in the operational phase incur cost 10 to
90 times higher than design phase

- Over 60% of the errors were intfroduced during design
- 2/3's of these not discovered until operations

Given care you can test requirements specification, design and
design specification

- Also prototypes, story boards and even macromedia demos test
aspects of the spec, arch and design

Which testing strategy? Finding errors or confidence in
functioning of software?

Class 6 14

Types of Testing

Coverage based - coverage of product, e.g., all statements
must be executed at least once

Fault based- detect faults, artificially seed and determine
whether tests get at least X% of the faults

Error based - focus on typical errors such as boundary
values (off by 1) or max elements in list

Black box - function, specification based,test cases derived
from specification - system testing

White box - structure, program based, testing considering
internal logical structure of the software - unit testing

Class 6 15

Testing Vocabulary

Error - human action producing incorrect result
Fault is a manifestation of an error

Failure - sometime encountering a fault causes a failure, hard to define
failure,it is relative and we must be aware of the standard

"Due to an error by 6regg a fault was intfroduced in the software and when
the fault was encountered, it caused the current failure.”

Verification "The process of evaluating a system or component to
determine whether the products of a given development phase satisfy
conditions imposed at the start of the phase” e.g., ensure software
correctly implements a certain function- have we built the system right

Validation "The process of evaluating a system or component during or at
the end of development process to determine whether it satisfies
specified requirements”, e.g., software built traceable to customer
requirements - have we built the right system

Class 6 16

Global View of Test Process
from van Vliet

Program or Doc

Expected output

oracle
input / \
Subset of input

Test
compare
strategy
Real output
Subset of inpu‘r\A PorD Test [
results

Class 6 17

Test Adequacy Criteria

* Critical to select subset of input domain that will
be the test set

Test techniques generally use a systematic way to
generate test cases - each fault is not equally
hazardous.

Test adequacy criteria specify requirements for
testing, e.g., stopping rule, measurement, test
case generator - all closely linked to techniques

Class 6 18

Fault Detection vs. Confidence
Building

Tension: intention is to provoke failure behavior -
a good strategy for fault detection but does not
inspire confidence

User wants failure free behavior - high reliability

- Frequently manifesting faults cause more damage (or
workarounds)

- Mimic the situation through random testing of scenarios

Class 6 19

Cleanroom Techniques

Developer cannot execute code - convinced of
correctness through manual techniques

These modules are integrated and tested by
someone else using input that was generated to
follow the distribution of actual use - goal is to
achieve a given reliability level

Class 6

20

Fault Detection to Fault Prevention

» Historical progression, in early days testing and

debugging

MODEL

GOAL

Phase:
-Demonstration
-Destruction

Software satisfies spec
Detect implementation faults

Life Cycle:
-Evaluation
-Prevention

Detect R, D & I faults
Prevent R, D & I faults

Class 6

21

Phase Models

Demonstration - if it runs test set, it is good, purpose to
convince someone there are no errors - dangerous
Proper testing is destructive, you want to find errors.

- Find as many faults as possible, look for test cases that reveal
faults

- Difficult to decide when to stop testing
- When budget is exhausted or time runs out?
* When all test cases pass

- Usually has a systematic way to develop test cases

Class 6 22

Lifecycle Models

Evaluation oriented - emphasis on detecting faults in
evaluation and design

Prevention oriented - early design of test cases, careful
planning and design of test activities

Over years we are moving from demonstration to prevention

BUT testing is still concentrated late in the development
cycle (move to the left, NOTI)

Testing is not only about errors but also about knowledge

Class 6 23

Requirements Engineering

Review or inspection to check that all aspects of the system have
been described
- Scenarios with prospective users resulting in functional tests

Boehm's criteria for functional specification: consistency,
completeness, feasibility, testability -- testing a requirements
specification test these criteria

Common errors in a specification:
- Missing information
- Wrong information
- Extra information

During requirements testing phase, testing strategy for other
phases is generated: test techniques, plan, scheme and
documentation

Class 6

24

Boehm's Criteria

Completeness- all components present and described
completely - nothing pending

Consistent- components do not conflict and specification
does not conflict with external specifications --internal and
external consistency. Each component must be traceable

Feasibility- benefits must outweigh cost, risk analysis
(safety-robotics)

Testable - the system does what's described
Beginnings of ICED-T

Class 6 25

Traceability Tables

Features - requirements relate to observable
system/product features

Source - source for each requirement
Dependency - relation of requirements to each other
Subsystem - requirements by subsystem

Interface requirements relation to internal and external
interfaces

Part of a requirements database, how a change in a
requirement affects aspects of the system

Class 6

26

Traceability Table: Pressman

SUBSYSTEM

S01 S02 S03..

RO1 X
RO2 X X
RO3... X

WHZmMTMOHCOHOM®D

Class 6

Testing and Design

Similar criteria to requirements
Documentation standards help in this process (see previous tables)
With refinement tests should become more detailed
Test for the future in architecture/high level design (remember
SARB goals)

- scenarios for anticipated change
Test design

- Tracing back to requirements

- Simulation

- Design walk throughs and inspections

Class 6 28

1))

Testing and Implementation

real” testing, some techniques:

Read the code to find errors

Walk throughs -- Inspections

Stepwise abstraction - what does the code do
Static tools - inspect code without execution
Dynamic - run the code

Test for correctness through formal verification

Class 6 29

Testing and Maintenance

More than 50 % of the time spent in maintenance

Modification causes another round of tests -
regression tests

- Library of previous test plus adding more (especially if
the fix was for a fault not uncovered by previous tests)

- Issue is whether to retest all vs selective retest,
expense related decision (and state of the architecture
design related decision -- if entropy is setting in you
better test)

Class 6

30

V&V Planning and Documentation

Where test activities are planned
TEEE 1012 specifies what should be in Test Plan

Test Design Document specifies for each software feature
the details of the test approach and lists the associated
tests

Test Case Document lists inputs, expected outputs and
execution conditions

Test Procedure Document lists the sequence of action in
the testing process

Test Report states what happened
In smaller projects many of these can be combined

Class 6

31

Hwn =

TEEE 1012

Purpose

Referenced Documents
Definitions

V&V overview
Organization

Master schedule
Resources summary
Responsibilities

Tools, techniques and
methodologies

Life cycle V&V
1. Management of V&V
2. Requirements phase V&V

g AW

ook w

7

Design phase V&V
Implementation V&V

Test phase V&V

Installation and checkout
phase V&V

O&M V&V

6. Software V&V Reporting
7. VA&V admin procedures

Class 6

1.

o ks whn

Anomaly reporting and
resolution

Task iteration policy
Deviation policy
Control procedures

Standard practices and
conventions 32

Manual Test Techniques

* Reading - peer review, insight via best and worst
technique (2 good, 2 marginal, can developers
detect marginal code)

+ Walkthroughs and Inspections *

+ Scenario Based Evaluation (SAAM)*
- Correctness Proofs

+ Stepwise Abstraction from code to spec

Class 6

33

Inspections

Sometimes referred to as Fagan inspections
Basically a team of about 4 folks examines code statement by
statement

- Code is read before meeting

- Meeting is run by a moderator

- 2 inspectors or readers paraphrase code

- Author is silent observer

- Code analyzed using checklist of faults: wrongful use of data,
declaration, computation, relational expressions, control flow,
interfaces

Results in problems identified that author corrects and moderator
reinspects

Maintain constructive attitude - not used in programmer's
assessment

Class 6 34

Walk Throughs

* Guided reading of code using test data to run a
“simulation”

+ Generally less formal
Learning situation for new developers

Parnas advocates a review with specialized roles
where the roles define questions asked - proven
to be very effective

Class 6

35

The Value of Inspections/Walk-Thrus
(Humphrey 1989)

+ Inspections are up to 20 times more efficient
than testing

Code reading detects twice as many
defects/hour as testing

80% of development errors were found by
inspections

Inspections resulted in a 10x reduction in cost of
finding errors

Class 6 36

SAAM

Software Architecture Analysis Method
Scenarios that describe both current and future behavior

Classify the scenarios by whether current architecture directly
(full support) or indirectly supports it

Develop a list of changes to architecture/high level design - if
semantically different scenarios require a change in the same
component, this may indicate flaws in the architecture

- Cohesion glue that keeps modules together - low=bad

» Functional cohesion all components contribute to the single
function of that module

* Data cohesion - encapsulate abstract data types

- Coupling strength of inter module connections, loosely coupled
modules are easier to comprehend and adapt, low=good

Overall evaluation is produced
Class 6 37

Coverage Based Techniques

Adequacy of testing based on coverage, percent statements
executed, percent functional requirements tested

All paths coverage is an exhaustive testing of code

Control flow coverage:

All nodes coverage, all statements coverage recall Cyclomatic
complexity graphs

All edge coverage or branch coverage, all branches chosen at
least once

Multiple condition coverage or extended branch coverage
covers all combinations of elementary predicates

Cyclomatic number criterion tests all linearly independent paths

Unit testing Class 6 38

Coverage Based Techniques -2

Data Flow Coverage - considers definitions and use of
variables

A variable is defined if it is assigned a value in a statement

A definition is alive if the variable is not reassigned at an
intermediate statement and it is a definition clear path

Variable use P-use (as a predicate) C-use (as anything else)
Testing each possible use of a definition is all-uses coverage

Requiring each definition path to be a simple cycle at most is
all DU (Definition Uses) paths coverage

Many variants of these

Class 6

39

Coverage Based Testing of
Requirements

* Requirements can be transformed to a graph
model with nodes denoting elementary
requirements and edges denoting relations
between elementary requirements

* Use this model to derive test cases and apply
control flow coverage

Class 6 40

Model of Requirements
Specification

All req'd

Fields
completeg

no

yes

Class 6

41

Fault Based Techniques

* Do not directly consider artifact tested, it is all
about the test set

* Find a test set that is great at finding faults:
- Fault seeding
- Mutation testing

Class 6

42

Fault Seeding

Effort to estimate faults in a program

Artificially seed faults, test to discover both seeded and new
faults

Total # of errors = ((tot err found - tot seed err found)* tot seed
err)/tot seed err found

Assumes real and seeded errors have same distribution
Manually generating faults may not be effective

Alternative is 2 groups, real faults found by X used as seeded
faults by Y

If we find many seeded faults and few others - results trusted,
converse not true

Many real faults found is not a positive sign - Poor Q

Myers- probability of more errors in a section is proportional to
the # of errors already found!

Class 6 43

Mutation Testing

Large # of variants of a program are generated by a set of
transformation rules, e.g, replace constant by another,
insert unary operator, delete statement

"mutants” are executed using test set

"mutants” producing same results as test expects are alive-
if a test set leaves many alive it is poor, mutant adequacy
score dead mutants/total mutants

Based on 2 assumptions:

- Competent programmer hypothesis - programs are close to
correct - test small variants

- Coupling effects hypothesis - tests that reveal simple faults
can also reveal complex faults

Class 6 44

Orthogonal Array Testing

Intelligent selection of test cases

Fault model being tested is that simple
interactions are a major source of defects

- Independent variables - factors and number of values
they can take -- if you have four variables,e ach of which
could have 3 values, exhaustive testing would be 81 tests
(3x3x3x3) whereas OATS technique would only require
9 and would test all pairwise interactions

Class 6 45

http://www.seilevel.com/OATS html

OATS Table

Run 1

Run 2

Run 3

Run 4

Run b

Run 6

Run 7

Run 8

Run 9

N (NN R [R RO |O0 >

N (| OIN[R[OIN|—|O|®

= O[O IN | = I OO

O~ INDNINDVIO|—|-INDNIO|CT

Class 6

46

OATS Method

1. How many independent variables (factors)

2. How many values will each variable have (levels)

3. Find a suitable orthogonal array -- premade

tables
. Map 1 & 2 onto array

. Transcribe runs into test cases adding "obvious
omissions” due to your knowledge

. (simplified)

Class 6 47

Test Adequacy Criteria

Weyuker's properties:

Applicability -adequate test set for every program of
reasonable size

Non-exhaustive applicability-do not require exhaustive testing

Monotonicity - for adequately tested software, more tests
cause no harm

Inadequate empty set property- no tests = not adequately
tested!

Class 6 48

Weyuker -2

Antiextensionality - semantic equivalence does not always permit
using same test,e.qg., sort

General multiple change - same syntax/ data flow does not equal
same test (arithmetic ops)

Antidecomposition - component fest is environment specific

Anticomposition - unit testing still requires composition testing
(interfaces and interactions)

Renaming - if 2 programs differ in nonessential ways (variable
names) same test sets are okay

Complexity - more complex, more tests

Statement coverage - every executable statement should be
executed in testing

Class 6

49

More on Testing

+ Testing begins at component level and works
outward (other direction is okay to0)

+ Different techniques are used at different points

+ Testing involves the developer and an independent
team and user advocates

+ Testing and debugging are different but
debugging must be accommodated

+ Testing is the last bastion of Quality
* Quality cannot be "tested in”

Class 6 50

Humphrey, 1989

Top-down and Bottom-up

* It is easier to adjust manpower needs
* Errors in critical modules are found early

Bottom-up Top-down
Major +Allows early testing aimed at proving *The control program is tested first
Features feasibility and practicality of particular + Modules are integrated one at a time
modules. * Major emphasis is on inferface testing
* Modules can be integrated in various
clusters as desired.
* Major emphasis is on module functionality
and performance.
Advqm-qges *No test stubs are needed *No test drivers are needed

* The control program plus a few modules
forms a basic early prototype

* Interface errors are discovered early
* Modular features aid debugging

Disadvantages

*Test drivers are needed

* Many modules must be integrated before a
working program is available

» Interface errors are discovered late

*Test stubs are needed

* The extended early phases dictate a
slow manpower buildup

« Errors in critical modules at low levels
are found late

Class 6

51

Types of Testing
Unit testing - adjunct to coding, uses drivers and stubs,
test cases source controlled
Integration testing -test to uncover errors in interfacing

Regression testing - subset of all tests to a given point to
use when changes are made (part of build - smoke testing)

Validation testing - succeeds when software functions in a

manner that can be reasonably expected by the customer..

Alpha and beta testing are part of this

System testing fully exercise the entire system:
- Recovery testing - OA&M
- Security testing
- Stress testing
- Performance testing
- Reliability testing
Class 6

52

Some Specialized Tests

-+ Testing GUIs

+ Testing of Client server architectures
+ Testing documentation and help facilities
+ Testing real time systems

- Acceptance test
» Conformance test

- Your favorite here

Class 6

53

BY Heuristics

Test incrementally

Test under no load (but very long), litle load, medium load,
heavy load, over load - break it!

Test error recovery code

Spend more time testing stability and recovery than
features

Diabolic Testing - use data you do not expect the program
to see

Reliability testing o gauge rejuvenation level

Regression testing - testing 50% of development time and
20% of costs, regression testing cuts this in half

Class 6 54

Extreme Testing
(sort of)

J.A.Whittaker, How to break software. A different
viewpoint

How good testers do testing - flexible testing, not about
rigid test plans - not an exact science

“smart people doing exploratory testing have found all the
best bugs I have ever seen”

The difference between users and testers is that testers
have clear goals

Relies on a general software fault model
- Familiar with the environment in which software operates
- Understand capabilities of the application

Class 6 55

Break Software - 2

The Human User
- Inputs delivered via GUT control

- Inputs delivered by programs - through the APT (developer as
user), e.g., tools

The File System User

- E.g. file permissions
The Operating System User

- E.g., application works in low memory situations
The Software User

- E.g., external relational database - can it handle the data
coming back?

Class 6 56

Break Software - 3

- Software performs 4 basic tasks:

Accepts input from environment - test input

Produces output and transmits it to its environment -
test output

Stores data internally in one or more data structures -
test data

Performs computation using input and stored data - test
computation

Class 6 57

Break Software -4

Examples for user interface:

Apply inputs that force all error messages to occur

Apply inputs that force the software to establish default
values

Explore allowable character sets and data types
Overflow input buffers

Find inputs that may interact and test combinations of their
values

Repeat the same input or series of inputs numerous times
(consume resources)

Class 6

58

Thought Problem

A new manager heads testing and development and she
believes in the SET goal of "moving to the left" especially
for testing. How would you get testing moved to the left?

Do you think mutation testing would have any value in your
current testing environment? Which phase of testing would
it be most appropriate, unit, integration, system?

Class 6 59

So Far

Software Process Models, Software Project Planning (woosh!),
Requirements, Estimation, Risk Analysis, Multics case study,
Architecture Reviews, Questionnaire Design

Software Quality Assurance
This Time: Configuration Management and Testing
Next Time: Architecture and Design

Class 6

60

Lecture Resources

R.S. Pressman, Software Engineering a Practitioner's
Approach, McGraw-Hill, 5th edition, 2001, ISBN:0-07-
365578-3.

http://wiki.org/
J.A.Whittaker, How to break software, Addison-Wesley,
2003. ISBN: 0-201-79619-8.

D. Spinellis, Code reading, Addison-Wesley, 2003, ISBN: O-
201-79940-5

B. Collins-Sussman, B.W. Fitzpatrick, C.M. Pilato, Version
Control with Subversion For Subversion 1.1,
http://svnbook.red-bean.com/

Humphrey, Watts S , Managing the Software Process,
Addison-Wesley Publishing Company, Inc., 1989
Class 6 61

