
Class 6 1

Class 6 CS540

Gregg Vesonder
Stevens Institute of Technology

© 2005 Gregg Vesonder

Class 6 2

Roadmap- Class 6

• Clarifications from last class
• Log Book volunteer
• Review of test
• Configuration Management
• Testing
• Reading: BY Chapter 11
• Reading next class: Brooks Chapters 7, 8, 9, 10 and BY 5, pp

223-247

Class 6 3

Clarifications

• Thought Problem

Class 6 4

Thought Problem

• Your company does not have a Quality program, lately there
have been some issues with software Quality and your
Director has asked you to institute a program for your
company. What is your plan?

Class 6 5

Calendar -Key Dates

• November 7th - second test
• November 21st - log books due
• December 12th - final exam

Class 6 6

Logbook

• Your Entry
• Succession Planning

Class 6 7

Configuration Management
the Problem

• Not a simple task!
– Different versions of software usually is in the field

during the life cycle
– Different parts of the team are on different versions of

the software and documents (see branching)
– The same release of a software product may have

multiple versions consisting of different combinations of
software components

• Configuration management is both a development
and production issue, a life time issue

Class 6 8

Branches of Development

Time

3rd Branch

2nd Branch

1st Branch

Original line of development

From Collins-Sussman, et.al., 2005

Class 6 9

The Baseline

• IEEE - “reviewed and agreed upon basis for further
development which can be changed only through formal
control procedures”

• Contained in the baseline are configuration items: source,
objects, requirements

• Configuration management maintains integrity of these
artifacts

• Major error- retrace steps through code, design documents
and requirements specification -TRACEABILITY

Class 6 10

Workflow of CR (MR)

Investigate CR

Prepare & sched
 work package

Implement change

Updated configuration items

Prioritized work package

Change approved

Change Request

rejected
Notify CR owner

Request info from
CR owner

Deferred

Class 6 11

Configuration Management Tools
• Manage the workflow of CRs
• If item is to be changed, developer checks it out and item is

locked to other users
• When item check back in revision history is stored
• All versions are recoverable
• Should be able to accommodate branching - necessary more times

than you think!
• Configuration management tools are very sophisticated, keeps only

the changes, the deltas and the remarks, timestamps and who did
what - essential for Buildmeister and testers

• New tools are change oriented release configuration is identified
by a baseline plus a set of changes.

Class 6 12

Configuration Management Plan

• Main parts:
– Management:

• How project is organized
– Activities:

• Who is on CCB, what are their responsibilities
• What reports are required
• What data is collected and archived - IMPORTANT

– Schedules
– Resources
– Plan Management

Class 6 13

Software Testing

• Testing is the last bastion of Quality - you can not “test in”
Quality however testing is a necessary but not sufficient
condition for Quality

• Dijkstra “Testing can show the preesence of bugs but not
their absence!”

• The Quality of the systems we deliver increasingly
determine the Quality of our existence

• Good testing is at least as difficult as good design (with
asymmetric rewards)

Class 6 14

When to Test
• NOW
• Postponing testing for too long is a severe mistake.
• Boehm- errors discovered in the operational phase incur cost 10 to

90 times higher than design phase
– Over 60% of the errors were introduced during design
– 2/3’s of these not discovered until operations

• Given care you can test requirements specification, design and
design specification
– Also prototypes, story boards and even macromedia demos test

aspects of the spec, arch and design
• Which testing strategy? Finding errors or confidence in

functioning of software?

Class 6 15

Types of Testing

• Coverage based - coverage of product, e.g., all statements
must be executed at least once

• Fault based- detect faults, artificially seed and determine
whether tests get at least X% of the faults

• Error based - focus on typical errors such as boundary
values (off by 1) or max elements in list

• Black box - function, specification based,test cases derived
from specification - system testing

• White box - structure, program based, testing considering
internal logical structure of the software - unit testing

Class 6 16

Testing Vocabulary
• Error - human action producing incorrect result
• Fault is a manifestation of an error
• Failure - sometime encountering a fault causes a failure, hard to define

failure,it is relative and we must be aware of the standard
• “Due to an error by Gregg a fault was introduced in the software and when

the fault was encountered, it caused the current failure.”
• Verification “The process of evaluating a system or component to

determine whether the products of a given development phase satisfy
conditions imposed at the start of the phase” e.g., ensure software
correctly implements a certain function- have we built the system right

• Validation “The process of evaluating a system or component during or at
the end of development process to determine whether it satisfies
specified requirements”, e.g., software built traceable to customer
requirements - have we built the right system

Class 6 17

Global View of Test Process
from van Vliet

Program or Doc

input

Test
strategy

oracle

Subset of input

Subset of input P or D

Expected output

Real output

compare

Test
results

Class 6 18

Test Adequacy Criteria

• Critical to select subset of input domain that will
be the test set

• Test techniques generally use a systematic way to
generate test cases - each fault is not equally
hazardous.

• Test adequacy criteria specify requirements for
testing, e.g., stopping rule, measurement, test
case generator - all closely linked to techniques

Class 6 19

Fault Detection vs. Confidence
Building

• Tension: intention is to provoke failure behavior -
a good strategy for fault detection but does not
inspire confidence

• User wants failure free behavior - high reliability
– Frequently manifesting faults cause more damage (or

workarounds)
– Mimic the situation through random testing of scenarios

Class 6 20

Cleanroom Techniques

• Developer cannot execute code - convinced of
correctness through manual techniques

• These modules are integrated and tested by
someone else using input that was generated to
follow the distribution of actual use - goal is to
achieve a given reliability level

Class 6 21

Fault Detection to Fault Prevention

• Historical progression, in early days testing and
debugging

Detect R, D & I faults
Prevent R, D & I faults

Life Cycle:
-Evaluation
-Prevention

Software satisfies spec
Detect implementation faults

Phase:
-Demonstration
-Destruction

GOALMODEL

Class 6 22

Phase Models

• Demonstration - if it runs test set, it is good, purpose to
convince someone there are no errors - dangerous

• Proper testing is destructive, you want to find errors.
– Find as many faults as possible, look for test cases that reveal

faults
– Difficult to decide when to stop testing

• When budget is exhausted or time runs out?
• When all test cases pass

– Usually has a systematic way to develop test cases

Class 6 23

Lifecycle Models

• Evaluation oriented - emphasis on detecting faults in
evaluation and design

• Prevention oriented - early design of test cases, careful
planning and design of test activities

• Over years we are moving from demonstration to prevention
• BUT testing is still concentrated late in the development

cycle (move to the left, NOT!)
• Testing is not only about errors but also about knowledge

Class 6 24

Requirements Engineering
• Review or inspection to check that all aspects of the system have

been described
– Scenarios with prospective users resulting in functional tests

• Boehm’s criteria for functional specification: consistency,
completeness, feasibility, testability -- testing a requirements
specification test these criteria

• Common errors in a specification:
– Missing information
– Wrong information
– Extra information

• During requirements testing phase, testing strategy for other
phases is generated: test techniques, plan, scheme and
documentation

Class 6 25

Boehm’s Criteria

• Completeness- all components present and described
completely - nothing pending

• Consistent- components do not conflict and specification
does not conflict with external specifications --internal and
external consistency. Each component must be traceable

• Feasibility- benefits must outweigh cost, risk analysis
(safety-robotics)

• Testable - the system does what’s described
• Beginnings of ICED-T

Class 6 26

Traceability Tables
• Features - requirements relate to observable

system/product features
• Source - source for each requirement
• Dependency - relation of requirements to each other
• Subsystem - requirements by subsystem
• Interface requirements relation to internal and external

interfaces
• Part of a requirements database, how a change in a

requirement affects aspects of the system

Class 6 27

Traceability Table: Pressman

XR03…

XXR02

XR01

S03…S02S01
R
E
Q
U
I
R
E
M
E
N
T
S

SUBSYSTEM

Class 6 28

Testing and Design

• Similar criteria to requirements
• Documentation standards help in this process (see previous tables)
• With refinement tests should become more detailed
• Test for the future in architecture/high level design (remember

SARB goals)
– scenarios for anticipated change

• Test design
– Tracing back to requirements
– Simulation
– Design walk throughs and inspections

Class 6 29

Testing and Implementation

• “real” testing, some techniques:
– Read the code to find errors
– Walk throughs -- Inspections
– Stepwise abstraction - what does the code do
– Static tools - inspect code without execution
– Dynamic - run the code
– Test for correctness through formal verification

Class 6 30

Testing and Maintenance

• More than 50 % of the time spent in maintenance
• Modification causes another round of tests -

regression tests
– Library of previous test plus adding more (especially if

the fix was for a fault not uncovered by previous tests)
– Issue is whether to retest all vs selective retest,

expense related decision (and state of the architecture
design related decision -- if entropy is setting in you
better test)

Class 6 31

V&V Planning and Documentation

• Where test activities are planned
• IEEE 1012 specifies what should be in Test Plan
• Test Design Document specifies for each software feature

the details of the test approach and lists the associated
tests

• Test Case Document lists inputs, expected outputs and
execution conditions

• Test Procedure Document lists the sequence of action in
the testing process

• Test Report states what happened
• In smaller projects many of these can be combined

Class 6 32

IEEE 1012

1. Purpose
2. Referenced Documents
3. Definitions
4. V&V overview

1. Organization
2. Master schedule
3. Resources summary
4. Responsibilities
5. Tools, techniques and

methodologies
5. Life cycle V&V

1. Management of V&V
2. Requirements phase V&V

3. Design phase V&V
4. Implementation V&V
5. Test phase V&V
6. Installation and checkout

phase V&V
7. O&M V&V

6. Software V&V Reporting
7. V&V admin procedures

1. Anomaly reporting and
resolution

2. Task iteration policy
3. Deviation policy
4. Control procedures
5. Standard practices and

conventions

Class 6 33

Manual Test Techniques

• Reading - peer review, insight via best and worst
technique (2 good, 2 marginal, can developers
detect marginal code)

• Walkthroughs and Inspections *
• Scenario Based Evaluation (SAAM)*
• Correctness Proofs
• Stepwise Abstraction from code to spec

Class 6 34

Inspections
• Sometimes referred to as Fagan inspections
• Basically a team of about 4 folks examines code statement by

statement
– Code is read before meeting
– Meeting is run by a moderator
– 2 inspectors or readers paraphrase code
– Author is silent observer
– Code analyzed using checklist of faults: wrongful use of data,

declaration, computation, relational expressions, control flow,
interfaces

• Results in problems identified that author corrects and moderator
reinspects

• Maintain constructive attitude - not used in programmer's
assessment

Class 6 35

Walk Throughs

• Guided reading of code using test data to run a
“simulation”

• Generally less formal
• Learning situation for new developers
• Parnas advocates a review with specialized roles

where the roles define questions asked - proven
to be very effective

Class 6 36

The Value of Inspections/Walk-Thrus
(Humphrey 1989)

• Inspections are up to 20 times more efficient
than testing

• Code reading detects twice as many
defects/hour as testing

• 80% of development errors were found by
inspections

• Inspections resulted in a 10x reduction in cost of
finding errors

Class 6 37

SAAM
• Software Architecture Analysis Method
• Scenarios that describe both current and future behavior
• Classify the scenarios by whether current architecture directly

(full support) or indirectly supports it
• Develop a list of changes to architecture/high level design - if

semantically different scenarios require a change in the same
component, this may indicate flaws in the architecture
– Cohesion glue that keeps modules together - low=bad

• Functional cohesion all components contribute to the single
function of that module

• Data cohesion - encapsulate abstract data types
– Coupling strength of inter module connections, loosely coupled

modules are easier to comprehend and adapt, low=good
• Overall evaluation is produced

Class 6 38

Coverage Based Techniques

• Adequacy of testing based on coverage, percent statements
executed, percent functional requirements tested

• All paths coverage is an exhaustive testing of code
• Control flow coverage:

– All nodes coverage, all statements coverage recall Cyclomatic
complexity graphs

– All edge coverage or branch coverage, all branches chosen at
least once

– Multiple condition coverage or extended branch coverage
covers all combinations of elementary predicates

– Cyclomatic number criterion tests all linearly independent paths

Unit testing

Class 6 39

Coverage Based Techniques -2

• Data Flow Coverage - considers definitions and use of
variables
– A variable is defined if it is assigned a value in a statement
– A definition is alive if the variable is not reassigned at an

intermediate statement and it is a definition clear path
– Variable use P-use (as a predicate) C-use (as anything else)
– Testing each possible use of a definition is all-uses coverage
– Requiring each definition path to be a simple cycle at most is

all DU (Definition Uses) paths coverage
– Many variants of these

Class 6 40

Coverage Based Testing of
Requirements

• Requirements can be transformed to a graph
model with nodes denoting elementary
requirements and edges denoting relations
between elementary requirements

• Use this model to derive test cases and apply
control flow coverage

Class 6 41

Model of Requirements
Specification

Notify user

Enter fields

All req’d
Fields
completed

yes

no Check
Dept
budget

Class 6 42

Fault Based Techniques

• Do not directly consider artifact tested, it is all
about the test set

• Find a test set that is great at finding faults:
– Fault seeding
– Mutation testing

Class 6 43

Fault Seeding
• Effort to estimate faults in a program
• Artificially seed faults, test to discover both seeded and new

faults
• Total # of errors = ((tot err found - tot seed err found)* tot seed

err)/tot seed err found
• Assumes real and seeded errors have same distribution
• Manually generating faults may not be effective
• Alternative is 2 groups, real faults found by X used as seeded

faults by Y
• If we find many seeded faults and few others - results trusted,

converse not true
• Many real faults found is not a positive sign - Poor Q
• Myers- probability of more errors in a section is proportional to

the # of errors already found!

Class 6 44

Mutation Testing

• Large # of variants of a program are generated by a set of
transformation rules, e.g, replace constant by another,
insert unary operator, delete statement

• “mutants” are executed using test set
• “mutants” producing same results as test expects are alive-

if a test set leaves many alive it is poor, mutant adequacy
score dead mutants/total mutants

• Based on 2 assumptions:
– Competent programmer hypothesis - programs are close to

correct - test small variants
– Coupling effects hypothesis - tests that reveal simple faults

can also reveal complex faults

Class 6 45

Orthogonal Array Testing

• Intelligent selection of test cases
• Fault model being tested is that simple

interactions are a major source of defects
– Independent variables - factors and number of values

they can take -- if you have four variables,e ach of which
could have 3 values, exhaustive testing would be 81 tests
(3x3x3x3) whereas OATS technique would only require
9 and would test all pairwise interactions

Class 6 46

OATS Table

0122Run 9

1012Run 8

2202Run 7

2021Run 6

0211Run 5

1101Run 4

1220Run 3

2110Run 2

0000Run 1

DCBA

http://www.seilevel.com/OATS.html

Class 6 47

OATS Method

1. How many independent variables (factors)
2. How many values will each variable have (levels)
3. Find a suitable orthogonal array -- premade

tables
4. Map 1 & 2 onto array
5. Transcribe runs into test cases adding “obvious

omissions” due to your knowledge
6. (simplified)

Class 6 48

Test Adequacy Criteria

• Weyuker’s properties:
– Applicability -adequate test set for every program of

reasonable size
– Non-exhaustive applicability-do not require exhaustive testing
– Monotonicity - for adequately tested software, more tests

cause no harm
– Inadequate empty set property- no tests = not adequately

tested!

Class 6 49

Weyuker -2

• Antiextensionality - semantic equivalence does not always permit
using same test,e.g., sort

• General multiple change - same syntax/ data flow does not equal
same test (arithmetic ops)

• Antidecomposition - component test is environment specific
• Anticomposition - unit testing still requires composition testing

(interfaces and interactions)
• Renaming - if 2 programs differ in nonessential ways (variable

names) same test sets are okay
• Complexity - more complex, more tests
• Statement coverage - every executable statement should be

executed in testing

Class 6 50

More on Testing

• Testing begins at component level and works
outward (other direction is okay too)

• Different techniques are used at different points
• Testing involves the developer and an independent

team and user advocates
• Testing and debugging are different but

debugging must be accommodated
• Testing is the last bastion of Quality
• Quality cannot be “tested in”

Class 6 51

Top-down and Bottom-up

•Test stubs are needed
• The extended early phases dictate a
slow manpower buildup
• Errors in critical modules at low levels
are found late

•Test drivers are needed
• Many modules must be integrated before a
working program is available
• Interface errors are discovered late

Disadvantages

•No test drivers are needed
• The control program plus a few modules
forms a basic early prototype
• Interface errors are discovered early
• Modular features aid debugging

•No test stubs are needed
• It is easier to adjust manpower needs
• Errors in critical modules are found early

Advantages

•The control program is tested first
• Modules are integrated one at a time
• Major emphasis is on interface testing

•Allows early testing aimed at proving
feasibility and practicality of particular
modules.
• Modules can be integrated in various
clusters as desired.
• Major emphasis is on module functionality
and performance.

Major
Features

Top-downBottom-up

Humphrey, 1989

Class 6 52

Types of Testing
• Unit testing - adjunct to coding, uses drivers and stubs,

test cases source controlled
• Integration testing -test to uncover errors in interfacing
• Regression testing - subset of all tests to a given point to

use when changes are made (part of build - smoke testing)
• Validation testing - succeeds when software functions in a

manner that can be reasonably expected by the customer..
Alpha and beta testing are part of this

• System testing fully exercise the entire system:
– Recovery testing - OA&M
– Security testing
– Stress testing
– Performance testing
– Reliability testing

Class 6 53

Some Specialized Tests

• Testing GUIs
• Testing of Client server architectures
• Testing documentation and help facilities
• Testing real time systems
• Acceptance test
• Conformance test
• Your favorite here

Class 6 54

BY Heuristics
• Test incrementally
• Test under no load (but very long), litle load, medium load,

heavy load, over load - break it!
• Test error recovery code
• Spend more time testing stability and recovery than

features
• Diabolic Testing - use data you do not expect the program

to see
• Reliability testing to gauge rejuvenation level
• Regression testing - testing 50% of development time and

20% of costs, regression testing cuts this in half

Class 6 55

Extreme Testing
(sort of)

• J.A.Whittaker, How to break software. A different
viewpoint

• How good testers do testing - flexible testing, not about
rigid test plans - not an exact science

• “smart people doing exploratory testing have found all the
best bugs I have ever seen”

• The difference between users and testers is that testers
have clear goals

• Relies on a general software fault model
– Familiar with the environment in which software operates
– Understand capabilities of the application

Class 6 56

Break Software - 2

• The Human User
– Inputs delivered via GUI control
– Inputs delivered by programs - through the API (developer as

user), e.g., tools
• The File System User

– E.g. file permissions
• The Operating System User

– E.g., application works in low memory situations
• The Software User

– E.g., external relational database - can it handle the data
coming back?

Class 6 57

Break Software - 3

• Software performs 4 basic tasks:
– Accepts input from environment - test input
– Produces output and transmits it to its environment -

test output
– Stores data internally in one or more data structures -

test data
– Performs computation using input and stored data - test

computation

Class 6 58

Break Software -4

• Examples for user interface:
– Apply inputs that force all error messages to occur
– Apply inputs that force the software to establish default

values
– Explore allowable character sets and data types
– Overflow input buffers
– Find inputs that may interact and test combinations of their

values
– Repeat the same input or series of inputs numerous times

(consume resources)
– …

Class 6 59

Thought Problem

• A new manager heads testing and development and she
believes in the SEI goal of “moving to the left” especially
for testing. How would you get testing moved to the left?

• Do you think mutation testing would have any value in your
current testing environment? Which phase of testing would
it be most appropriate, unit, integration, system?

Class 6 60

So Far

• Software Process Models, Software Project Planning (woosh!),
Requirements, Estimation, Risk Analysis, Multics case study,
Architecture Reviews, Questionnaire Design

• Software Quality Assurance
• This Time: Configuration Management and Testing
• Next Time: Architecture and Design

Class 6 61

Lecture Resources
• R.S. Pressman, Software Engineering a Practitioner’s

Approach, McGraw-Hill, 5th edition, 2001, ISBN:0-07-
365578-3.

• http://wiki.org/
• J.A.Whittaker, How to break software, Addison-Wesley,

2003. ISBN: 0-201-79619-8.
• D. Spinellis, Code reading, Addison-Wesley, 2003, ISBN: 0-

201-79940-5
• B. Collins-Sussman, B.W. Fitzpatrick, C.M. Pilato, Version

Control with Subversion For Subversion 1.1,
http://svnbook.red-bean.com/

• Humphrey, Watts S , Managing the Software Process,
Addison-Wesley Publishing Company, Inc., 1989

