
Class 1 1

Class 1 CS540

Gregg Vesonder
Stevens Institute of Technology

Copyright 2005 Gregg Vesonder

Class 1 2

Roadmap- Class 1
• My history
• Class mechanics
• Quantitative Software Engineering
• Software Process Models
• CMM and the SEI
• Ethics of our profession
• Reading: first chapter in BY and chapters 10 & 29 in C
• Reading for next week: chapter 3 in BY, preface and

chapter 1 in Brooks, chapter 35 in C

Class 1 3

Vesonder’s Relevant Bio
• Software for 30+ years
• PhD in Cognitive Psychology - Computer modeling of learning

and memory
• [Bell|AT&T] labs for 25 years
• Dozens of projects
• Reviewer and served in Software Technology Center
• Stevens: CS540 (web version too), CS565
• University of Pennsylvania: Software Engineering & Human

Computer Interaction

• Your turn -- intro and expectations

Class 1 4

Class Mechanics

• Review Syllabus - note dates
• Three texts plus

supplementary reading
• 14 lectures + Final
• 2 tests (each 25% of grade)
• Final - 35%
• Participation and Log book -

5% & 10%
• Attendance

• email will be used,
vesonder@mac.com

• Web site will have additional
resources, especially lecture
slides

• Testing will be from books,
supplemental readings and
lectures

• Blog
http://homepage.mac.com/vesonder

• Office hours by appointment

Class 1 5

Class Mechanics - 2

• Syllabus is proposed schedule
• For two tests, first half of class is lecture
• Final is complete period
• Note Bernstein and Yuhas book at

bookstore by 9/9 (preprints), Constantine
(?)

Class 1 6

Log Book

• Preferably a bound book
• Contains thoughts and insights about software engineering

and how you practice it, especially quantitatively
• Should have at least a paragraph/week (5 entries)
• Review at least two each week in class or on blog- with text

copy
• NOT CLASS NOTES!
• Hand in on November 21st, returned at exam
• Method to this - should be part of your professional life,

time to start!

Class 1 7

Policies

• Cheating is not tolerated - unfortunate
that I have to mention this

• On grades …

Class 1 8

Views of Software Engineering

• Your view - we will review in the last class

Class 1 9

Birth of SE

• The software crisis, NATO conference,
autumn 1968, Garmisch, Germany

• Origin of term software engineering
• http://homepages.cs.ncl.ac.uk/brian.randell

/NATO/index.html

Class 1 10

Preface of NATO Conference
• Although much of the discussions were of a detailed

technical nature, the report also contains sections reporting
on discussions which will be of interest to a much wider
audience. This holds for subjects like:

– the problems of achieving sufficient reliability in the data systems which are
becoming increasingly integrated into the central activities of modern society

– the difficulties of meeting schedules and specifications on large software
projects

– the education of software (or data systems) engineers

– the highly controversial question of whether software should be priced
separately from hardware

Class 1 11

Views of Software Engineering

• Bernstein and Yuhas: “..think like an engineer,
especially for software”
– SE practices make development of software:

• Less chaotic
• Reliably repeatable
• More humane

• Emphasis on simplification, trustworthiness, risk
assessment and architecture

Class 1 12

Views of Software Engineering

• SEI:
– Engineering is the systematic application of scientific

knowledge in creating and building cost-effective
solutions to practical problems in the service of mankind.

– Software engineering is that form of engineering that
applies the principles of computer science and
mathematics to achieving cost-effective solutions to
software problems.

Class 1 13

Quantitative Software Engineering

• “Quantitative Software Engineering is an analytical
approach to producing reliable software products within
budget and on time” - Stevens program

• Which matches the IEEE definition:
1. The application of a systematic, disciplined, quantifiable

approach to the development, operation and maintenance of
software; that is the application of engineering to software

2. The study of approaches as in (1)

Class 1 14

Software Engineering Knowledge
• SWEBOK, Software Engineering Body of Knowledge:

– Software requirements analysis
– Software design
– Software construction
– Software testing
– Software maintenance
– Software configuration management
– Software quality analysis
– Software engineering management
– Software engineering infrastructure
– Software engineering process

Class 1 15

Reality Check

• There is theory
• There is engineering
• There is state of the art
• There is state of the practice
• There is reality

Class 1 16

Software Process Models

• The cost of constructing most software occurs during
development (broadly defined, development is not equivalent
to coding!) and not during production

• Process is a series of predictable steps, a roadmap
• We will cover:

– Simplified -> waterfall
– Prototyping
– Incremental
– RAD
– Spiral

Class 1 17

But First

• Code and Fix, Do Until Done Models
• No planning, general idea of product, informal

“design” mostly through code
• Code, use, debug, test until ready for release
• No way to tell you are done or if requirements met
• “bankrupt choice born of desperation” (p.16)

Class 1 18

Simplified Model

PROBLEM
Reqts Spec

Tech Spec

Code

SystemReqts Eng

D
esign

Imple
ment

Te
st M
aintain

Class 1 19

Main Milestones

• Requirements engineering -> baselined
Requirements Specification

• Design -> baselined Technical Specification
• Implementation -> baselined Code
• Test -> test report

Class 1 20

Waterfall Model (Royce 1970)
Reqts Eng

V&V

Design
V&V

Implementation
V&V

Test
V&V

Maintenance
V&V

Class 1 21

Development Activities by
Lifecycle Phase (from van Vliet)

6.410.334.149.2Design
Activity

6.915.970.36.9Coding
Activity

25.826.143.44.7Integration
Test
Activity

Acceptance
Test Phase

Integration
Test Phase

Coding
Phase

Design
Phase

e.g., only 50% of Design occurs in
Design Phase!

Class 1 22

Review of Waterfall
• Not change tolerant
• Difficult for Customer to state all requirements upfront

(only 40% to 60% of requirements known initially)- no
customer preview until late

• Document driven - excessive and expensive
• System not available until late in the process - false

comfort in X% done
• Strong Development - Maintenance Distinction
• Came from an era when coding was difficult, expensive
• Energy before system is built, early days when computer

time was expensive
• Still being used

Class 1 23

Why Waterfall is still used

• Familiar to customers, steps make intuitive
sense - easy to understand

• Structure for new staff or teams - tight
control by project management

• Requirements are stable
• It is documented

Class 1 24

Prototyping-1

Listen to customer Build/revise mockup

Customer test drives mockup

When finished: Design, Implement, Test, Maintain

Class 1 25

On Prototyping

• Evolutionary versus throwaway prototypes
• Prototyping takes advantage of high level languages,

sacrifices efficiency for speed
• Great when few initial requirements
• People (dev and users) like prototype
• Danger of feature creep
• Documentation, performance of final system may suffer -

perceived lack of discipline
• Customer and management may think it is done
• Quality can go either way
• Requires experienced developers

Class 1 26

Advantages of Proto

• Evolving requirements are visible in the
system

• Minimizes miscommunication, language gap
barrier

• Spec is proto
• Progress can be seen - non trivial
• Early user involvement may increase quality

Class 1 27

Disadvantages

• Has a bad rap with some managers
• Performance, documentation, quality issues
• Proto environment may not equal target

deployment environment
• Proto does not equal finished system,

often tough to convince users
• Potential for much coding, little analysis

Class 1 28

Incremental

• Functionality of system is produced and delivered in small
increments

• “prototyping + waterfall” - but focuses on delivery of
operational product

• Focuses on assigning priorities to features for each release -
Rolling Stones … don’t always get what you want … you get
what you need

• Especially useful with small staff, to manage technical risks
and to build to current capability (e.g., hardware)

• Not good when delivery/installation is expensive

Class 1 29

RAD- Rapid Application
Development

• Incremental development where time is driver
• Introduced by IBM in the 80’s - James Martin’s book
• JRPs (Joint Requirements Planning) - requirements triaged,

structured discussion of requirements
• JADs (Joint Application Design)-developers and users work

together through prototyping to a finalized design
• Product developers are SWAT (Skilled with Advanced Tools) team -

highly dependent on productivity tools (generators)
• Cutover- final testing of system takes place, users trained, system

installed
• Best used in information systems where technical risks are not high
• Typically 60-90 days

Class 1 30

RAD Advantages

• Tools reduce cycle time
• Project team usually knows problem domain, key

– Developers are willing to dive deeply into domain - key
success factor in any model

• Time-box, usually 60 days, bounds development
• Customer involvement
• Installation and user training are an explicit part

of the process

Class 1 31

RAD Disadvantages

• Users have to be involved
• Technical risks should be low
• Developers have to be very good and experienced

with RAD - good developers are a success factor
in any model

• System can be modularized in 2 month chunks
– Users have to be willing to deal with constant

involvement and change

• Difficult to attach to legacy systems that did not
use RAD

Class 1 32

Spiral Development

• Recognizes that at each iteration you go
through most phases

• At each iteration you pinpoint sub-problem
with highest risk and solve (highest risk
versus highest priority feature - could
converge if you are selling software)

• Other models are subsumed

Class 1 33

Spiral Model (Boehm)

Class 1 34

WinWin Spiral Model

Class 1 35

WinWin Adds

• Life Cycle Objectives - goals for each
major software activity

• Life Cycle architecture
• Initial Operation Capability - (site plan+)

preparation for software
installation/distribution, site preps before
install (even for PCs) and assistance
required by all relevant parties.

Class 1 36

Spiral Advantages

• Risk analysis may uncover show stoppers
early

• Chunks development so that it is
affordable

• Waterfall like characteristics add some
discipline, management control

• Lots of feedback from all stakeholders

Class 1 37

Spiral Disadvantages

• Expensive for small projects - more
mechanism than proto

• Complex and requires risk assessment
expertise

• Development is on again/off again so the
other stages can be accomplished - in
proto development is continuous.

• Not really used as much as folks claim

Class 1 38

All Projects Should

• Use a Development Plan Approach (write
and follow):
– What will you do?
– How will you do it?
– What do you depend on?
– When will you be done?
– Who will do what?

Class 1 39

Requirements Issues
(adapted from Futrell, et.al.(2002) p 147)

++++-Early Functionality

+-++-Complex system

-+++-Proof of concept

--++-Change often

++--+Defined early

-+--+Well known

IncRADSpiralProtoWaterRequirements

Class 1 40

Maintenance vs. Continuing
Development

• During the system lifecycle there is a
tradeoff on placing resources on
progressive and antiregressive activities

• Maintenance - Development split is
sometimes enforced by the organization
and sometimes because of failure to use
antiregressive activities or fear of
restructuring (due to age)

Class 1 41

Software Engineering Institute

• http://www.sei.cmu.edu/
• “The SEI promotes the evolution of software

engineering from an ad hoc, labor intensive
activity to a discipline that is well managed and
supported by technology.”

• Three themes:
– Move to the left
– Reuse everything
– Never make the same mistake twice - Senator Hollings, “There

is no education in the second kick of a mule.”

Class 1 42

Capability Maturity Model

• A roadmap for software process improvement
(Paulk 1999)

• Describe an evolutionary process from ad hoc to
maturity and discipline

• Used in conjunction with the SEI’s IDEAL model
– Initiating the improvement program
– Diagnosing the current state of practice
– Establishing the plans for the improvement program
– Acting on the plans and recommended improvement
– Learning from it

Class 1 43

CMM (Paulk, 1999)

And heroicsCompetent
people

1 Initial

Requirements management, Software project
planning, software project tracking and oversight,
Software subcontract management, Software QA,
Software configuration management

Project
management
processed

2 Repeatable

Organization process focus, Organization process
definition, Training program, Integrated software
management, Software product engineering,
Intergroup coordination, Peer reviews

Engineering
processes and
organizational
support

3 Defined

Quantitative process management,Software quality
management

Product and
process quality

4 Managed

Defect prevention, Technology change management,
Process change management

Continual
Process
Improvement

5 Optimizing

KEY PROCESS AREASFOCUSLEVEL

Class 1 44

CMM translation

1. Initial - adhoc, chaotic, few processes defined, success is a
function of individual effort

2. Repeatable- basic project management tracks costs, schedule
and functionality, repeatable processes

3. Defined- Defined, documented organization wide process- all
projects use it

4. Managed- Measures of software process and Quality are
collected, products and processes are quantitatively understood
and controlled using detailed measures

5. Optimizing- Continuous process improvement enabled by
quantitative measurement and from testing innovative ideas and
technologies

Class 1 45

Software Engineering Ethics

• Book describes disasters due to failures in
software engineering.

• Software projects are pressure filled
• Software projects rely on relationships and trust
• IEEE Computer Society and ACM have developed

a software engineering code of ethics with eight
principles

• Think of the roles software plays in your life -
health, transportation, finances, … vV provides
examples

Class 1 46

SE Code of Ethics

1. Public - shall act consistently with the public interest
2. Client and employer - shall act in a manner that is in the best interests of

their client and employer and that is consistent with the public interest
3. Product - shall ensure that their products and related modifications

meet the highest professional standards possible
4. Judgment - shall maintain integrity and independence in their

professional judgment
5. Management - shall subscribe to promote an ethical approach to the

management of software development and maintenance
6. Profession - shall advance the integrity and reputation of their

profession consistent with the public interest
7. Colleagues - shall be fair to and supportive of their colleagues
8. Self - shall participate in lifelong learning regarding the practice of their

profession and promote an ethical approach to the practice of the
profession

Class 1 47

Discussion Points

• Hardware follows Moore’s Law human’s
often do not.

– Moore's law is the empirical observation that at our rate of technological development, the
complexity of an integrated circuit, with respect to minimum component cost will double in about
24 months - Wikipedia

• “The more technically competent a team is
the more resistant it is to new technology”

Class 1 48

Thought Problems

• You are part of an off shore development
organization that has just been assigned a project
from a new company in a new domain. There is a
12 hour time difference. What model?

• You are part of NASA’s program for making cost
effective interplanetary, multiuse robotics
platforms - what CMM level should you chose?

Class 1 49

This Class

• The Class
• Software Engineering
• Software Process Models
• SEI & CMM
• Software Engineering and responsibility

Class 1 50

Next Time

• Begin Brooks
• Project planning
• Risk Management
• Requirements

Class 1 51

Resources

• Futrell, Shafer & Shafer, Quality
software project management, Prentice
Hall, 2002, ISBN 0-13-091297-2

• Van Vilet, H. Software Engineering:
Principles and Practice, Second Edition,
Wiley, 2000, ISBN: 0-471-97508-7

