Class 1 €S540

Gregg Vesonder
Stevens Institute of Technology

Copyright 2005 Gregg Vesonder

Class 1

Roadmap- Class 1

My history

» Class mechanics
* Quantitative Software Engineering

Software Process Models

* CMM and the SET

Ethics of our profession
Reading: first chapter in BY and chapters 10 & 29 in C

Reading for next week: chapter 3 in BY, preface and
chapter 1in Brooks, chapter 35in C

Class 1

Vesonder's Relevant Bio

Software for 30+ years

PhD in Cognitive Psychology - Computer modeling of learning
and memory

[Bell| AT&T] labs for 25 years

Dozens of projects

Reviewer and served in Software Technology Center
Stevens: €S540 (web version too), CSH65

University of Pennsylvania: Software Engineering & Human
Computer Interaction

» Your turn -- intro and expectations

Class 1

Class Mechanics

Review Syllabus - note dates

Three texts plus
supplementary reading

14 lectures + Final

2 tests (each 25% of grade)
Final - 35%

Participation and Log book -
5% & 10%

Attendance

Class 1

email will be used,
vesonder@mac.com

Web site will have additional
resources, especially lecture
slides

Testing will be from books,
supplemental readings and
lectures

Blog

http://homepage.mac.com/vesonder

Office hours by appointment

Class Mechanics - 2

- Syllabus is proposed schedule
- For two tests, first half of class is lecture
* Final is complete period

- Note Bernstein and Yuhas book at

bookstore by 9/9 (preprints), Constantine
()

Class 1

Log Book

Preferably a bound book

Contains thoughts and insights about software engineering
and how you practice it, especially quantitatively

Should have at least a paragraph/week (5 entries)

Review at least two each week in class or on blog- with text

copy
NOT CLASS NOTES!

Hand in on November 21st, returned at exam

Method to this - should be part of your professional life,
time to start!

Class 1

Policies
» Cheating is not tolerated - unfortunate

that I have to mention this
+ On grades ...

Class 1

Views of Software Engineering

* Your view - we will review in the last class

Class 1

Birth of SE

- The software crisis, NATO conference,
autumn 1968, Garmisch, Germany

» Origin of term software engineering

* http://homepages.cs.ncl.ac.uk/brian.randell
/NATO/index.html

Class 1 9

Preface of NATO Conference

Although much of the discussions were of a detailed
technical nature, the report also contains sections reporting
on discussions which will be of interest to a much wider
audience. This holds for subjects like:

the problems of achieving sufficient reliability in the data systems which are
becoming increasingly integrated into the central activities of modern society

- the difficulties of meeting schedules and specifications on large software
projects

- the education of software (or data systems) engineers

- the highly controversial question of whether software should be priced
separately from hardware

Class 1 10

Views of Software Engineering

Bernstein and Yuhas: "..think like an engineer,
especially for software”
- SE practices make development of software:

* Less chaotic

» Reliably repeatable

* More humane
Emphasis on simplification, trustworthiness, risk
assessment and architecture

Class 1 11

Views of Software Engineering

SET:

Engineering is the systematic application of scientific
knowledge in creating and building cost-effective
solutions to practical problems in the service of mankind.

Software engineering is that form of engineering that
applies the principles of computer science and
mathematics to achieving cost-effective solutions to
software problems.

Class 1 12

Quantitative Software Engineering

"Quantitative Software Engineering is an analytical
approach to producing reliable software products within
budget and on time" - Stevens program

Which matches the TEEE definition:

1. The application of a systematic, disciplined, quantifiable
approach to the development, operation and maintenance of
software; that is the application of engineering to software

2. The study of approaches as in (1)

Class 1 13

Software Engineering Knowledge

- SWEBOK, Software Engineering Body of Knowledge:

- Software requirements analysis

- Software design

- Software construction

- Software testing

- Software maintenance

- Software configuration management
- Software quality analysis

- Software engineering management

- Software engineering infrastructure
- Software engineering process

Class 1

Reality Check

* There is theory
* There is engineering

- There is state of the art

+ There is state of the practice
* There is reality

Class 1

15

Software Process Models

The cost of constructing most software occurs during
development (broadly defined, development is not equivalent
to coding!) and not during production

Process is a series of predictable steps, a roadmap
We will cover:

- Simplified -> waterfall

- Prototyping

- Incremental

- RAD

- Spiral

Class 1 16

But First

+ Code and Fix, Do Until Done Models

* No planning, general idea of product, informal
“design” mostly through code

+ Code, use, debug, test until ready for release
* No way to tell you are done or if requirements met
* "bankrupt choice born of desperation” (p.16)

Class 1 17

Simplified Model

Regt

Reqts Spec

ubis2q

Tesy

Tech Spec

Code
(\’\

Class 1

System

UIDLUIDW

18

Main Milestones

» Requirements engineering -> baselined
Requirements Specification

+ Design -> baselined Technical Specification
* Implementation -> baselined Code
- Test -> test report

Class 1 19

Waterfall Model (Royce 1970)

Regts Eng
V&V

Implementation

V&V

Maintenance
V&V

Class 1 20

Development Activities by
Lifecycle Phase (from van Vliet)

Design Coding Integration | Acceptance
Phase Phase Test Phase | Test Phase
Integration 47 43.4 26.1 25.8
Test
Activity
Coding 6.9 70.3 15.9 6.9
Activity
Design 49.2 34.1 10.3 6.4
Activity

e.g., only 50% of Design occurs in

Design Phasel!

Class 1

21

Review of Waterfall

Not change tolerant

Difficult for Customer to state all requirements upfront
(only 40% to 60% of requirements known initially)- no
customer preview until late

Document driven - excessive and expensive

System not available until late in the process - false
comfort in X% done

Strong Development - Maintenance Distinction
Came from an era when coding was difficult, expensive

Energy before system is built, early days when computer
time was expensive

Still being used

Class 1

22

Why Waterfall is still used

- Familiar to customers, steps make intuitive
sense - easy to understand

» Structure for new staff or teams - tight
control by project management

* Requirements are stable
* It is documented

Class 1 23

Prototyping-1

Listen to customer ~ Build/revise mockup

> 2

Customer test drives mockup
When finished: Design, Implement, Test, Maintain

Class 1 24

On Prototyping

Evolutionary versus throwaway prototypes

Prototyping takes advantage of high level languages,
sacrifices efficiency for speed

Great when few initial requirements
People (dev and users) like prototype
Danger of feature creep

Documentation, performance of final system may suffer -
perceived lack of discipline

Customer and management may think it is done
Quality can go either way
Requires experienced developers

Class 1

25

Advantages of Proto

+ Evolving requirements are visible in the
system

* Minimizes miscommunication, language gap
barrier

»+ Spec is proto
» Progress can be seen - non trivial
» Early user involvement may increase quality

Class 1 26

Disadvantages

* Has a bad rap with some managers
» Performance, documentation, quality issues

* Proto environment may not equal target
deployment environment

* Proto does not equal finished system,
often tough to convince users

* Potential for much coding, little analysis

Class 1 27

Incremental

Functionality of system is produced and delivered in small
Increments

“prototyping + waterfall” - but focuses on delivery of
operational product

Focuses on assigning priorities to features for each release -
Rolling Stones .. don't always get what you want ... you get
what you need

Especially useful with small staff, to manage technical risks
and to build to current capability (e.g., hardware)

Not good when delivery/installation is expensive

Class 1 28

RAD- Rapid Application
Development

Incremental development where time is driver
Introduced by IBM in the 80's - James Martin's book

JRPs (Joint Requirements Planning) - requirements triaged,
structured discussion of requirements

JADs (Joint Application Design)-developers and users work
together through prototyping to a finalized design

Product developers are SWAT (Skilled with Advanced Tools) team -
highly dependent on productivity tools (generators)

Cutover- final testing of system takes place, users frained, system
installed

Best used in information systems where technical risks are not high
Typically 60-90 days

Class 1 29

RAD Advantages

Tools reduce cycle time
Project team usually knows problem domain, key

- Developers are willing to dive deeply into domain - key
success factor in any model

Time-box, usually 60 days, bounds development
Customer involvement

Installation and user training are an explicit part
of the process

Class 1 30

RAD Disadvantages

Users have to be involved

- Technical risks should be low

Developers have to be very good and experienced
with RAD - good developers are a success factor
in any model

System can be modularized in 2 month chunks

- Users have to be willing to deal with constant
involvement and change

Difficult to attach to legacy systems that did not
use RAD

Class 1 31

Spiral Development

* Recognizes that at each iteration you go
through most phases

* At each iteration you pinpoint sub-problem
with highest risk and solve (highest risk
versus highest priority feature - could
converge if you are selling software)

« Other models are subsumed

Class 1 32

Spiral Model (Boehm)

CUMULATIVE PROGRESS
DETERMINE COST A THROUGH _
OBJECTIVES, o STEPS Tt~
ALTERNATIVES, EVALUATE
CONSTRAINTS — ALTERNATIVES
RISK ANALYSIS IDENTIFY.

RESOLVE RISKS

RISK ANALYSIS

OPERATIONA
PROTOTYPE

COMMITMENT
PARTITION RISK ANALYSIS /~

d

PROTOTYPE

PROTOTYPE

REVIEW Y

RQTS PLAN
LIFE CYCLE
PLAN

DEVELOPMENT
PLAN

INTEGRATION DESIGN VALIDATION
AND TEST AND VERIFICATION

PLAN NEXT

PHASES DEVELOP, VERIFY

IMPLEMENTATION NEXT LEVEL PRODUCT

Class 1 33

WinWin Spiral Model

2. ldentify Stakeholders
win conditions

1. Identify next-level

3. Reconcile win conditions,
Stakeholders

establish next level objectives,

constraints, alternatives
5 |
7. Review and secure

1
|
| ‘ | '
- |
commitment

| 4. Evaluate product and
process alternatives.

Resolve risks.
6.Validate product and

process definitions

5. Define next level of product and
process, including partitions

Class 1 34

WinWin Adds

+ Life Cycle Objectives - goals for each
major software activity

+ Life Cycle architecture

» Initial Operation Capability - (site plan+)
preparation for software
installation/distribution, site preps before

install (even for PCs) and assistance
required by all relevant parties.

Class 1 35

Spiral Advantages

- Risk analysis may uncover show stoppers
early

» Chunks development so that it is
affordable

- Waterfall like characteristics add some

discipline, management control

 Lots of feedback from all stakeholders

Class 1

36

Spiral Disadvantages

+ Expensive for small projects - more
mechanism than proto

»+ Complex and requires risk assessment
expertise

» Development is on again/off again so the
other stages can be accomplished - in
proto development is continuous.

* Not really used as much as folks claim

Class 1 37

All Projects Should

* Use a Development Plan Approach (write
and follow):

- What will you do?

- How will you do it?

- What do you depend on?

- When will you be done?

- Who will do what?

Class 1

Requirements Issues

(adapted from Futrell, et.al.(2002) p 147)

Requirements Water |Proto | Spiral |[RAD |Inc
Well known + - - + _
Defined early + - _ + +
Change often - + + _ -
Proof of concept - + + + -
Complex system - + + - +
Early Functionality - + + + +

Class 1

39

Maintenance vs. Continuing
Development

» During the system lifecycle there is a
tradeoff on placing resources on
progressive and antiregressive activities

* Maintenance - Development split is
sometimes enforced by the organization
and sometimes because of failure to use
antiregressive activities or fear of
restructuring (due to age)

Class 1

40

Software Engineering Institute

http://www.sei.cmu.edu/

+ "The SEI promotes the evolution of software
engineering from an ad hoc, labor intensive
activity to a discipline that is well managed and
supported by technology.”

Three themes:
- Move to the left

- Reuse everything

- Never make the same mistake twice - Senator Hollings, "There
is no education in the second kick of a mule.”

Class 1 41

Capability Maturity Model

A roadmap for software process improvement
(Paulk 1999)

Describe an evolutionary process from ad hoc to
maturity and discipline

Used in conjunction with the SEI's IDEAL model

- Initiating the improvement program

- Diagnosing the current state of practice

- Establishing the plans for the improvement program
- Acting on the plans and recommended improvement
- Learning from it

Class 1 42

CMM (Paulk, 1999)

LEVEL FOCUS KEY PROCESS AREAS

5 Optimizing | Continual Defect prevention, Technology change management,
Process Process change management
Improvement

4 Managed Product and Quantitative process management,Software quality
process quality | management

3 Defined Engineering Organization process focus, Organization process

processes and
organizational

definition, Training program, Integrated software
management, Software product engineering,

support Intergroup coordination, Peer reviews
2 RepeaTable Project Requirements management, Software project
management planning, software project tracking and oversight,
processed Software subcontract management, Software QA,
Software configuration management
1 Initial Competent And heroics
people

Class 1

43

CMM translation

Initial - adhoc, chaotic, few processes defined, success is a
function of individual effort

Repeatable- basic project management tracks costs, schedule
and functionality, repeatable processes

Defined- Defined, documented organization wide process- all
projects use it

Managed- Measures of software process and Quality are
collected, products and processes are quantitatively understood
and controlled using detailed measures

Optimizing- Continuous process improvement enabled by
quantitative measurement and from festing innovative ideas and
technologies

Class 1 44

Software Engineering Ethics

- Book describes disasters due to failures in

software engineering.
+ Software projects are pressure filled
+ Software projects rely on relationships and trust

+ TEEE Computer Society and ACM have developed
a software engineering code of ethics with eight
principles

» Think of the roles software plays in your life -
health, transportation, finances, ... vV provides

examples
Class 1 45

SE Code of Ethics

Public - shall act consistently with the public interest

Client and employer - shall act in a manner that is in the best interests of
their client and employer and that is consistent with the public interest

Product - shall ensure that their products and related modifications
meet the highest professional standards possible

Judgment - shall maintain integrity and independence in their
professional judgment

Management - shall subscribe to promote an ethical approach to the
management of software development and maintenance

Profession - shall advance the integrity and reputation of their
profession consistent with the public interest

Colleagues - shall be fair to and supportive of their colleagues

Self - shall participate in lifelong learning regarding the practice of their
profession and promote an ethical approach to the practice of the
profession

Class 1 46

Discussion Points

- Hardware follows Moore's Law human's
often do not.

- Moore's law is the empirical observation that at our rate of technological development, the
complexity of an integrated circuit, with respect to minimum component cost will double in about
24 months - Wikipedia

* "The more technically competent a team is
the more resistant it is fo new technology”

Class 1 47

Thought Problems

* You are part of an off shore development
organization that has just been assigned a project
from a new company in a new domain. There is a
12 hour time difference. What model?

* You are part of NASA's program for making cost
effective interplanetary, multiuse robotics
platforms - what CMM level should you chose?

Class 1 48

This Class

« The Class

+ Software Engineering

- Software Process Models
- SEI & CMM

+ Software Engineering and responsibility

Class 1

49

Next Time

* Begin Brooks

* Project planning
- Risk Management
* Requirements

Class 1

50

Resources

* Futrell, Shafer & Shafer, Quality
software project management, Prentice
Hall, 2002, ISBN 0-13-091297-2

* Van Vilet, H. Software Engineering:
Principles and Practice, Second Edition,
Wiley, 2000, ISBN: 0-471-97508-7

Class 1

51

