Saturdays at Stevens

Version 0.1
Gregg Vesonder
Ye Yang

Welcome!

These Labs use a Raspberry Pi single board computer and a breadboard. There are
many kits available, many for under $100. For a listing of resources, code and this
document, visit the web site at http://aarphacker.com . I hope you enjoy these Labs
and please send comments to vesonder@mac.com.

Lab 0: Throwie!

Let’s get a bit familiar with electronics. For some of you this may be the first
electronic circuit you make! The kit for a throwie consists of a 10mm LED, a CR2032
disk battery and some tape. Note that the LED has two leads of unequal size. The
long lead is called the Anode and the shorter end is the cathode. Place the longer
end on the + side of the disk battery and the cathode on the - side. It should look
like this:

Now take a strip of tape and wrap it around the battery and leads, attaching the
leads to the battery. Your LED should now be glowing. Congratulations you have
finished your first project.

1
©Gregg Vesonder

Why is it called a throwie? Well folks have gone a step further and wrapped a
magnet with tape around the battery. Once the magnet is attached you can throw it
on a metal surface and it sticks creating some impressive lighting effects on metallic
surfaces. On non-metallic surfaces you can attach it with sticky tack or poster tack.
The LED should stay lit for over a week, depending on the quality of the battery. 1
have had them last 2+ weeks.

Lab 1: Light!

One of the popular examples to do on a Raspberry Pi or raspi is to make a LED (Light
Emitting Diode) blink. This requires wiring a breadboard connected to the raspi
with a LED and accompanying resistor, writing the code and running it. However
first we are just going to light up a LED to understand the circuit. Although basically
the same result this circuit is more complicated than the throwie.

1) Parts list:
* LED
* Resistor under 1000 ohms
* 2 jumper wires, 1 black and 1 red

2) Make sure the raspi is disconnected from the power.

3) In the parts list picture you will notice that the LED has two leads and that
one is longer than the other. That is the positive lead and, by elimination, the
shorter is the negative lead! If some prankster, snipped both leads to the
same size you could look at the bulb and see that one of the leads expands to
a squarish area, which is attached to the negative lead. Another sign is that
usually the lower ring on the LED bulb is flat on the negative side.

4) Take the led, and on the fghij rows, place the positive element in row 23,
column j and the negative element in (25, j) - note from now on I will use this

(row, column) notation. It should look like this:

5) Now itis time to add the resistor. In the picture above note that each row
has five slots. Each of these slots is electrically connected to each other. So if
[want to attach something to the positive lead I can use the slots in row 23 f-i
to connect them. That is what makes breadboards special allowing
experimenters like us to make quick connections. [am taking advantage of
this to connect the resistor. First | bent the leads of the resistor to make it
easier to insert into the board (yours are already bent). Place one of the
leads, either will work, in (23,i). Place the other end of the resistor lead in
(20,1). Your board should resemble this:

6) On resistors. The resistor we are using is 330 ohms. The bands on the
resistor represent the value of the resistor. This resistor has bands in order:

3
©Gregg Vesonder

7)

orange, orange, brown and gold. Orange stands for 3 and brown, when in the
3rd position, stands for x10. So the value is 33 x 10 or 330 ohms. (the bands
are aligned so that the gold or the silver band is at the far end). Why did we
use 330 ohms. Because that is a safe value for this LED. The resistor lowers
the current flow so we do not burn up the LED. It depends on a few factors
beyond the scope of this class but is worth exploring on the web.

Attach the jumper wires. By convention the black wire always links ground
to the negative lead. Place one end of the jumper wire into a slot on row 25,
connected to the negative lead of the led. In the picture it is attached to
(25,g). Insert the other end into a ground slot of the interface board, row 10.
The interface board “extends “ the interface pins of the raspi to the
breadboard. I selected the ground slot, labeled GND on the right hand side of
the board, represented by slot (10,i). If you look carefully you will see GND
labeled at that slot on the board. Next attach the red wire to power, in this
case 5 volts. Insert the red jumper in row 1, in the picture it is (1,j). oror

L
4+ 459

a999s
4999

4
©Gregg Vesonder

or like this if you have a B+

B VW CANAKIT.COM

¥ ©0S
axi1 ns

81

21
$¥Z ONS OXd ONS NS

ON9 OSIN ENE <42 ON9 IS €enE

)S 033 ON9 €2

~

as X70S ISoW 2ZZ
133 &2

S

AR EE YR E YN
9

0Z ON9 ONS

L T T T .. N B

& & an=
COFEFEFEFEFEFENENE] NS 61
'EEEEEEER]

O 5 % & 8 8 2 nnan

8) Time to testit! First, please have your instructor check your wiring.
After the instructor checks your wiring power up the raspi by inserting the
micro usb connector into the raspi. The LED lights! Congratulations you
have wired your first electronic circuit! Unplug the raspi and on to your next
adventure.

How was this different from the throwie?

5
©Gregg Vesonder

Lab 2: You Blinked!

In Lab 1 the raspi was used merely as a power source. We used none of its ability to
actually control circuits. In this Lab you will program the LED to blink. There is a
lot going on in this Lab, it provides the foundation for the rest of the Labs. Firstlet’s
build the circuit we will use. From a coding perspective we will be working with

variables and loops.

1) The parts are the same as the first Lab: a 3301 resistor, an LED and a red
and a black jumper wire. () is the symbol for ohms, the resistance value of a
resistor that we discussed in Lab 1.

2) Wire the circuit exactly as you wired it in Lab 1 with one exception, instead of
placing the red jumper leading from the resistor to (1,j) place the end to (8,j);
this connects the power to a pin that can be controlled through the raspi by a

program. Your board should look like this:

“Hl“ullilnuuun

i

AL L L L L

|

3) Or like this if you have a B+!

6
©Gregg Vesonder

WWW CANAKIT COM

ns

21 ¥ YOS

¥Z ONS OXd ONS

el T N
Sz
L E B B . B K. N _E _E N N W N N N U _ N _J W _N_

as X1JS ISOW ZZ
13

ON9

9

- & & e
a
S

0OZ GON¢

- & a a s
'EEEEERER]
FEREEEREERER] ONS

" " 2 aan

PR R}

\:

M M E N E A AR E R AR E R EEEEN
61

4)

5)

Have your instructor check your board. After the instructor checks it, plug in
the power supply and wait for the computer to start. It will take a minute or
so.

If everything goes fine you will be taken into the raspberry pi window
system. However if you get a login prompt, type pi - note that whenever
there is an entry on the screen [willuse this font. You will now be
prompted for a password. Ask your instructor for it if the instructor has not
told you. If successful you should get the prompt: pi@raspberrypi ~$.
At the prompt type star tx. This command will take you from the command
line interface of linux to the window interface of linux. In either case your

screen should look like this:

@ @ &

Miri Config Shutdown Molirarn

- L

!:i 'Hi i! IDLE Miclori
Pi Store Scratch IDLE 3
Debian Pytnon

Referance Garnes

&

OCR Mathernatica

Resources

6) Time to start the programming environment. For all of our Labs we will be
using the Python language and the IDLE programming environment. The
Python language is a popular language that is used by students, educators
and professional developers. Python was not named after a snake but after a
British comedy group, Monty Python. One of their movies, Monty Python and
the Holy Grail is on my top ten list. Back to programming. Point the mouse to
LXTerminal, and double click quickly on it. This takes you into a command
line window. Type sudo idle atthe prompt and this will launch the
Python programming environment. Point the mouse at the file menu item at
the top of the window, click and then select “New Window.” This will open
an editor in the IDLE programming environment. If everything goes right

your screen should now look like this:

ile Ed| File Edit Format Run Options Windows Help

ython] |
GCC 4
ype "

7) In order to save time, a partial version of the program blinkie.py has been
prepared for you. Load it now by moving the mouse to the file menu and
selecting “Open”. Choose blinkie.py, and your screen should look like this:

@ ‘Ul | File Edit Format Run Options Windows Help
NiFi Coniig Shutdown
IDLE
- Open -ox
Directory: /home/pi
@ Q)g £ .cache £ .local
£ .config £) Desktop
Pi Store Scratch & .dbus & grail
£ .fontconfig £3 python_games
£ .gstreamer-0.10) blinkie.py
& .gvfs
£ .idlerc
Python
(N File name: blinkie.py Open
5armas
Files of type: Python files (*.py.*.pyw) Cancel
OCR a
OCR Matharnatica
Resources
Ln: 1 Col: 0

Select open and the program will display in a simple editor. Your task is to
code two lines at the end of this program in the for loop. In the first line you
must replace the question marks with instructions. You must write the
complete second line, replacing the question marks on that line. Please note
that Python is white space sensitive. The indentation of lines following the

9

for command indicates that those lines belong within the for loop. When
you think you have completed the program, ask your instructor to check it
and then “Save” the file using the file menu and after the save completes,
select the Run menu and choose “Run module”. Watch the blinking light.
Congratulations, with this newfound skill you are ready to control the world
through the raspi!

A bit on the program

The first part of any code is a description of what the code does. In Python #
indicates that what follows on that line is text and is not to be interpreted as code.
After describing the program, additional modules necessary for the operation of the
program are loaded through the import command. The module can be renamed
with the as command. The module RPi.GPIO renamed as GPIO, provides the
program access to the pins on the computer that were wired on the breadboard.
The module time provides the sleep command that permits the code to do nothing
for a specified time, so that the LED will stay on or off for that interval.

The next section of the program sets up the environment for the blinking led. First
set a variable, repeat, that indicates how many times the LED should blink. The
next two lines talk about the code’s interface to the breadboard. GPIO.BOARD,
indicates that we are identifying the pins by the physical location of the pin on the
interface board, not the name that the raspi board uses, which would be #23 and is
labeled as such on the interface board. Given that the next line indicates the pin, 16.
Itis 16 because, facing the board the numbering starts at the upper left corner of the
interface board as 1, the upper right corner as 2 and continues to alternate.
Therefore all odd pin numbers are on the left hand side and even pins on the right
hand side. The jumper wire was inserted in (8,j) which counting is 16. An easy way
is just to double the row number to get the addressable pin number. Since the pin
will be used to light the LED itis an OUT port. If the port was used to collect a
button press that the software would read it would be an IN port, since it would
input data to the program.

This brings us to the for loop. The for loop is a way to repeat a set of commands
for a specified number of times. As you learn Python, you will discover that there
are many wondrous ways to specify this, but the current code uses a basic count
variable which we setas repeat. Loops and other Python mechanisms end their
description with a : . Usually that : will be followed by indented lines. The
indentation indicates that those lines are part of the body of the for loop.

The first line in the body of the for loop turns on the LED by setting the pin to
HIGH. time.sleep then sleeps, i.e., does nothing for the interval specified within
the parentheses which indicates the number of seconds to sleep. The next two lines
you contribute. What do you want to do next? Turn off the LED and wait. So if the
LED is turned on by setting it to HIGH then turn off the LED by setting it to ???. It
should then stay off for a time before it begins the next loop. The last command
ensures that the program ends with all pins in a default state. Phew! Here’s the code:

10

blinkie.py, a program to blink an led
based on a program by Rahul Kar
http://www.rpiblog.com

add some essential modules

HFHHHHFHH

import RPi.GPIO as GPIO
import time

GPIO provides access to the board pins
from the program.

time provides us with a sleep capability
so that we can add a delay

HHHHFHH

#i#
##declare repeat
#i#

#
repeat indicates how many times to blink
#

#
#setup board access
#

GPIO.setmode (GPIO.BOARD)
GPIO.setup (16, GPIO.OUT)

##

##do a for loop with repeat

##
GPIO.output(l6, GPIO.HIGH)
time.sleep (1)
GPIO.output(l6, GPIO.LOW)
time.sleep (1)

#

#cleanup

#

GPIO.cleanup()

11

Lab 3: Help!

In this Lab we will use all we have learned to this point to send a distress message to
the world. An international indicator of distress is SOS, the acronym has been
described as an abbreviation for “Save Our Souls”, “Save Our Ship” or even “Send
Out Succour”! More on the history of SOS can be found in wikipedia. Our task is to
use the LED to send out a constant SOS to the world. The way we will do this is to
vary the duration of the blinks and that can be used to send Morse Code.

From a coding perspective we will be introduced to a new looping construct while,
the logical value True, functions, strings and printing. That’s a lot but with these
tools you are well on your way to learning python!

Morse Code transmits information as a series of on-off lights, tones, clicks of a
certain duration. It has been around since the mid 1800s and is still in use today.
Again Wikipedia has an excellent article on its history.

Letters in Morse Code are sent as a series of dots (sometimes called dits) and
dashes. A dash is 3 times longer than a dot. Letters are a collection of dots and
dashes. The morse code for a S is 3 dots, and for an O is 3 dashes. A dash is 3 times
longer than a dot. There are also specific pauses between dots and dashes, letters
and words to indicate the various separators. This table summarizes the
relationship:

Element Units of duration

dot

dash

Pause between dot or dash

Pause between letters

N(W (iR | W

Pause between words

So our goal in this program is to have the board, through the led, send out a
continuous SOS signal.

1) First check the board. If you have not done so wire the board as in Lab 2.

2) Now start a new IDLE session by typing sudo idle atthe command line.
When the IDLE screen appears, select “File” with your mouse and then select
“New Window”. When the Window appears, select File and then Open with
your mouse and load the sos.py file.

3) In this programming task you must code the S, O and SOS Python functions.
Ask your instructor if you are having difficulty.

4) When you think you have completed the program, ask your instructor to
check it and then “Save” the file using the file menu and after the save
completes, select the Run menu and choose “Run module”. Now just wait
until help comes to Save Our Ship!

12

A bit on the code

This code builds on the code of blinkie.py. The new thing introduced is functions. A
function provides a way to capture code that is used frequently. A function should
represent one task. In this case our tasks were building dits, dashes, pauses, letters
and a word, SOS. Functions can be built from other functions and this becomes a
very powerful tool. In Python we define a function by starting with the special word
def, then name the function (the name should be a clear indication of what it does)
and then provide a list of zero or more arguments, items that you want the function
to use. In this case we always passed uni t, which was the duration of one sleep
unit, later set to 0.1 or a tenth of a second. The identifying line of the function ends
with a : signifying that the indented lines that follow belong with the function.
return indicates the end of each of these functions. In Python you do not have to
use return to end a function but I think it is useful, especially in Python, since
otherwise the end is indicated by lack of indentation. return can also return
values to a calling module but that is beyond this Lab!

One final aspect to this program is the while True: statement. This provides a
way for us to loop until the program is interrupted. Stop the program by selecting
“Exit” in the file menu. In effect the loop can go on forever since a while body loops
if the condition is True. Since the condition in this case is True, it always loops.
Usingwhile True isa convenient way for waiting an indeterminate amount of
time for input. In this case our rescue ship home! Here’s the code for the Lab:

S0S.py
program to do morse code

import necessary libraries.
GPIo accesses the ports of Raspi
time provides us with sleep

T T T g T v

import RPi.GPIO as GPIO
import time

morse code info

sos in morse code 1is:

dashes are 3 times longer than
dit. 1 unit space within a letter
3 unit space between letters,

7 unit space between words

R T T T T g S

repeat = 50

13

pin

= 16

GPIO.setmode (GPIO.BOARD)
GPIO.setup(pin,GPIO.OUT)

#

define dit (dot)

#

def

def

def

def

HoH o OHH R

H H

dit(unit):

GPIO.output(pin, GPIO.HIGH)
time.sleep(unit)

GPIO.output(pin, GPIO.LOW)
time.sleep(unit)

#pause between elements of a letter
return

dash(unit):

GPIO.output(pin, GPIO.HIGH)
time.sleep(unit * 3)

#dash is 3 times dit
GPIO.output(pin, GPIO.LOW)
time.sleep(unit)

#pause between elements of a letter
return

letter_pause(unit):
time.sleep(unit * 2)

why 2?7 each unit has a pause
at end, just add 2 more

to make it 3.

return

word_pause(unit):
time.sleep(unit * 6)
again accommodating
unit pause

return

Define functions s_letter,
O_

letter and sos

for ever

while True:

sos(0.1)

14

#
#time to cleanup
#

GPIO.cleanup()

Lab 4: Roll Them!

Dungeons and Dragons is a complex role playing game where a small group serves
as a party of adventurers taking on roles such as a wizard and one person serves as
the dungeon master controlling the flow of the game. The adventures take on
challenging monsters and other challenges and fate is often determined by rolling a
variety of dice. Your task is to create a program or programs that act as six sided,
eight sided, ten sided, 12 sided and 20 sided dice. A picture of some D&D dice from
Wikipedia is provided for motivation!

Lab 5: Was it a Dit or Dah?

One challenge with using Morse Code to send messages is that it depends on your
potential rescuers differentiating between a dot/dit and a dash/dah. This is further
complicated by the fact that if your raspberry pi is doing a lot of other tasks, sleep
becomes less accurate and dots may be elongated to look closer to dashes. One way
to combat that is to use redundant cues providing multiple ways to determine a dot
or a dash. This Lab will do just that.

The wiring for this Lab will be different from the previous labs. The wiring of the
first four Labs was simplified to ease the patient reader into electronics. The key
simplification was that we were relying on the raspi control pins to provide the

15

power. Since in this Lab we will have more power needs, we are shifting to a more
conventional wiring of our breadboard with a “separate” power source. We are
using the power pins from the raspberry pi to provide us with power. The
raspberry pi has two sources of power, 3.3 volts and 5 volts. This should be clear
from this diagram from http://elinux.org/RPi_Low-level peripherals:

R-Pi GPIO left

bottom
P1-01 sz

svarower | [O] ° SV Power
RECHOOGON () @) svrowsr

R2: GPIO 2 (SDA)
o Ground

ooy

ey @ (©) w01 axo)

cround @) (0) ceio15 ®xD)
0 0 =k
© 0
© 0 won
© © wo
cro10mosy @) @) Grouna
coomso) @) @ crozs

GPIO 11 (SCLK) ° ° GPIO 8 (CE0)

Ground ° ° GPIO 7 (CE1)

GPIO 17

R1: GPIO 21
R2: GPIO 27

GPIO 22

3V3 Power

P1-25 P1-26

bottom top
R1: Revision 1 right
R2: Revision 2

and for the B+ from

http://www.raspberrypi.org/forums/viewtopic.php?f=78&t=82397.

Raspberry Pi B+ J8 Header
Pin# NAME NAME Pin#
01 3.3v DC Power Ol © DC Power 5v 02
03 GPIO02 (SDAT | 12C) 0)Q DC Power 5v 04
05 GPIO03 (SCL1 ., 12C) 0) Ground 06
07 GPIO04 (GPIO_GCLK) D © (TXD0) GPIO14 08
09 Ground D © (RXD0) GPIO15 10
11 GPIO17 (GPIO_GENO) 0) O (GPIO_GENT) GPIO18 12
13 GPIO27 (GPIO_GEN2) olNe Ground 14
15 GPI022 (GPIO_GEN3) 0) O (GPIO_GEN4) GPIO23 16
17 3.3v DC Power 0) O (GPIO_GENS5) GP1024 18
19 GPIO10 (SPI_MOSI) 0) Ground 20
21 GPIO09 (SPI_MISO) 0 © (GPIO_GEN6) GP1025 22
23 GPIO11 (SPI_CLK) 0 © (SPI_CEO_N) GPIO08 24
25 Ground D) © (SPI_CE1_N)GPIO07 26
27 ID_SD (12C ID EEPROM) (OO} (I2C ID EEPROM) ID_SC 28
29 GPIO05 oNe Ground 30
31 GPIO06 0 © GPIO12 32
33 GPIO13 oNe Ground 34
35 GPIO19 0 © GPIO16 36
37 GPI1026 O © GPI1020 38
39 Ground D © GPI1021 40
R o014 http://www.element14.com

16

(These pins correspond to the pin placement on the breakout board on the
breadboard. So, referring to the numbering scheme describe in Lab 1, 3.3 volts are
available from pin 1 and pin 17 and 5 volts is available from pins 2 and 4. This Lab
will use 3.3 volts. In order to easily access the 3.3 volts we will use the power and
ground columns on the right hand side of the board. The entire circuit photo is
provided for reference as the wiring proceeds.

IR

-

-

—

—
R
e
.
R
R
B
c—

e

1Y

111111

or like this if you have a B+

17
©Gregg Vesonder

WWW.CANAKIT.COM

vas
"~

""\ﬂ'\""'ﬁ"}"'ﬁ”’,ﬁﬂﬂl{rﬁ

1S €ene
ONS NS

=
81 OX1L NS

21
¥Z ON9 OXxd

ON9 OSIW ENE <£Z QN9

"]
0Z ON9 ON9 130 &z

354039 @GNS '€Z

N
N
=1
(=]
w
—
(92}
(@]
¥
=
(2}
o

9
b [AN ¢ |
12 Z1

R EREERERT ON9 61
L]

O @ % &8 8 a8 umaan
~" H % N A " monm .

. Check that the raspberry pi is not connected to power. Start with a bare
breakout board, breadboard.
. Unlike the 5 row columns on either side of the divide of the breadboard, the 2
separate columns on each end are linked electrically not by row, but by
column. Therefore when power is provided to the “+”, red row (1,+) in our
notation, (2,+) to (30,+) can provide power. Similarly if (1,-) is grounded,
(2,-) to (30,-) provides ground. Therefore we establish power and ground b,
on the left hand side using breadboard pin 1, left hand side(1, a) and
connecting it to right hand side (1,+). Itis best to use a red or orange jumper
to do this. Note the remainder of the connections will be on the right hand
side. Ground will be established by connecting (3,i) to (1,-).
Place the yellow LED with the positive (longer) leg in (21,h) and the negative
in (22,h). Place a 330Q resistor leg in (21, j) and the other end of the leg in
(21,+). Place one end of a green jumper in (22,g) and the other end of the
jumper to (8,i), connecting the yellow LED to pin 12.
Place the red LED with the positive leg in (28,i) and the negative leg in (29,i).
Place a 330Q resistor leg in (28,j) and the other leg in (28,+). Place one end

18

of a blue jumper wire in (29,j) and the other end in (6,j) connecting the red
LED to pin 16.

Coding Task

Have your instructor check the circuit. Power up the raspberry pi, startx and then
launch a shell window and sudo idle. Your coding task is to add the code to
operate the second LED and code the loop for it. Note the duration of sleep
provided by the loop may need to be altered a bit.

A bit on the code

The code for this task adds no new coding constructs but it does add some logic
twists in controlling items on the breadboard. Since two LEDs are now powered,
the trickle of power the logic pins could provide was inadequate. We had to add
power to the circuit and rely on the pin to complete the circuit when commanded by
linking ground and closing the circuit. Therefore to close the circuit the pin needed
to be pulled LOW and to open the circuit and turn off the light, it was pulled HIGH.

SOSry.py
program to do morse code

and provide redundant cues
for dot and dash using yellow
and red LEDs

import necessary libraries.
GPIo accesses the ports of Raspi
time provides us with sleep

HHEHHHFEHRFEHHRREH

import RPi.GPIO as GPIO
import time

morse code info

sos in morse code is:

dashes are 3 times longer than
dit. 1 unit space within a letter
3 unit space between letters,

7 unit space between words

HHEHFHHIFIFHFR

repeat = 50

pin = 12

#

setup pin 2

#

establish 2 pins
to control LEDs
#

19

GPIO.setmode(GPIO0.BOARD)
GPIO.setup(pin,GPIO0.O0UT)
GPIO.setup(pin2,GPI0.0UT)

#

define dit (dot)
note that LOW and HIGH

pin LOW provides power

ef

def

#

#
#
have reversed, pulling
#
#
d

dit(unit):
GPIO.output(pin,GPIO.LOW)
time.sleep(unit)
GPIO.output(pin,GPIO.HIGH)
time.sleep(unit)

#pause between elements of a letter
return

dash(unit):

#define dash

#

def

def

def

def

letter_pause(unit):
time.sleep(unit * 2)

why 27 each unit has a pause
at end, just add 2 more

to make it 3.

return

word_pause(unit):
time.sleep(unit * 6)
again accommodating
unit pause

return

s_letter(unit):
dit(unit)
dit(unit)
dit(unit)
#code S

return

o_letter(unit):
dash(unit)
dash(unit)
dash(unit)
#code O

return

20

def sos(unit):
s_letter(unit)
letter_pause(unit)
o_letter(unit)
letter_pause(unit)
s_letter(unit)
word_pause(unit)

#code SOS
return
#
for ever
#
#
define loop
#
#
time to cleanup
#

GPIO.cleanup()

Lab 6: Sensored!

This lab explores reading sensors. It requires a bit more sophistication including
comfort with command line computing, intricate, delicate wiring and some
familiarity with python. The objective of this lab is to connect and read a digital
temperature sensor.

Let’s wire the breadboard first. The parts list:
* 3 jumper wires, red, yellow and black, if possible
e DS18b20 waterproof digital temperature sensor
* 47K Qresistor (yellow, purple, red)

Follow these wiring directions carefully and make sure that your raspberry pi
breadboard combination is disconnected from power.

21

1. Connect the digital temperature sensor to the breadboard. Do this carefully
since the wires are fragile and stranded. Place the red wire in (30,j), the
black wire in (28,j) and the yellow wire in (26,j).

2. Place one end of the red jumper in (30,i) and the other end in (1,a). This
connects the temperature sensor to 3.3 volts.

3. Place one end of the black jumper in (28,i) and the other end in (3,i). This
connects the temperature sensor to ground.

4. Place one end of the yellow jumper in (26, i) and the other end in (4,a). This
connects the temperature sensor to pin 4 on the GPIO bus. Note it is very
important that it is attached to pin 4.

5. Finally place one end of the resistor in (26,g) and the other end of the
resistor in (30,g).

6. Make sure that subsequent steps did not loosen any connections especially
the connections of the temperature sensor to the breadboard.

Command Line Work

This lab requires some command line work. Connect the raspberry pi to power and
once logged in, startx to the window interface and start an LXTerminal session.
Follow these steps at the command line

1. Type sudo modprobe wl-gpio and return

22

Type sudo modprobe wl-therm and return

Type cd /sys/bus/wl/devices and return

Type ls and return

Note the numeric file name, this is the serial number of the sensor and we
will use it to communicate with it.

Cd to the serial number file name, e.g, cd 28-000006087458 and
return

Type cat wl_slave and return

8. The last item on the second line returned t=28250 provides the temperature
in centigrade, once you divide the number by 1000.

Ui W

o

N

The previous steps were required to obtain the sensors serial number that you will
use in the code. Attached is the code provided in temper.py in your home directory.
This python code provides access to reading the probe. You must modify and add to
this code. Firstreplace the serial number with the correct serial number. Second
place the temperature reading mechanism in a loop, so that it can constantly report
the temperature at 10 sec intervals. Finally provide the code that converts the
centigrade temperature to Fahrenheit. If you forget (I did) the formula is:

Temp-centigrade *(9/5) +32
The code provided is:

#

temper.py - python temperature sensor

program adopted from University of Cambridge

Computer Laboratory.

#

import time

#

enables sleep

#

tfile = open ("/sys/bus/wl/devices/28-000006087458/wl_slave'")

#

read the file

note that the number 28-...

may be different and you acquire
that from your command line

investigations

#

#H#HHH

you will need a loop

#H#HHH

text = tfile.read()
tfile.close()

23

#
discard the first line
#

secondline = text.split("\n")[1]

#
dissect the second line
#

temperaturedata = secondline.split(" ") [9]
temperature = float(temperaturedatal2:1)

#H#HH

prints out as centigrade/celsius, convert
to fahrenheit. I know, but it is traditional!
#H#HH

print temperature/1000.0

time.sleep(10)

A bit on the code

This program illustrates file i/0 and string manipulation. Python is particularly
adept at string manipulation which makes it a wonderful choice for many
applications, including social media analysis, big data, web apps and with the
addition of other data structures (e.g., lists, tuples, sequences, ...), artificial
intelligence.

The command line manipulations were made possible by a hack to the linux kernel
which bypassed some of the GPIO maneuvers we used in previous labs.

Lab 7 The capital of South Dakota is?

Exploring the state capital program. Sometimes it is best to read code. Can we
generalize this?

#

#

https://github.com/pythonkc/beginners-python-
workshop/blob/master/ static/dependancies/state capitals.py

24

#

#

capitals_dict = {

"Alabama'’ : 'Montgomery',
"Alaska'’ : 'Juneau',
"Arizona' : 'Phoenix',
"Arkansas' : 'Little Rock',
'California' : 'Sacramento',
'Colorado' : 'Denver',
"Connecticut' : 'Hartford',
'Delaware' : 'Dover',
'"Florida' : 'Tallahassee',
'Georgia' : 'Atlanta',
"Hawaii' : 'Honolulu',
'Idaho' : 'Boise',

"ITlinois"' : 'Springfield',
"Indiana' : 'Indianapolis',
"ITowa' : 'Des Moines',
'Kansas' : 'Topeka',
"Kentucky' : 'Frankfort',
'Louisiana' : 'Baton Rouge',
"Maine' : 'Augusta',
'Maryland' : 'Annapolis',
"Massachusetts' : 'Boston',
"Michigan' : 'Lansing',
"Minnesota' : 'Saint Paul',
"Mississippi' : 'Jackson',
"Missouri' : 'Jefferson City',
'"Montana' : 'Helena',
"Nebraska' : 'Lincoln',
"Nevada' : 'Carson City',
'New Hampshire' : 'Concord',
'New Jersey' : 'Trenton',
"New Mexico' : 'Santa Fe',
"New York' : 'Albany',

'North Carolina' : 'Raleigh',
"North Dakota' : 'Bismarck',
'Ohio"' : 'Columbus',
'Oklahoma' : 'Oklahoma City',
'Oregon' : 'Salem',
'"Pennsylvania' : 'Harrisburg',
'Rhode Island' : 'Providence',
'South Carolina' : 'Columbia',
"'South Dakota' : 'Pierre’,
'"Tennessee' : 'Nashville',
'Texas' : '"Austin',

"Utah' : 'Salt Lake City',

25

"Vermont' : 'Montpelier',

'Virginia' : 'Richmond',
'Washington' : 'Olympia’',

'West Virginia' : 'Charleston',
'Wisconsin' : 'Madison',
'Wyoming' : 'Cheyenne',

}

import random

while True:

state = random.choice(capitals_dict.keys())

capital = capitals_dict[state]

capital_guess = raw_input("What is the capital of " +
state + "? ")

if capital_guess == "Exit":
print "Goodbye"
break

if capital_guess == capital:
print "Correct! Nice job."

else:

print "Incorrect. The capital of " + state + " is
+ Cap.|ta1 + ||.||

LAB 8 Shall we play a game?

In the early 80s a movie called War Games made the title of this Lab famous. Here's
the IMDb description of the game:

A young man finds a back door into a military central computer in which reality is
confused with game-playing, possibly starting World War II1.

Although we will not be starting World War III today, let’s create a game called nim
using all that you learned today. The game is simple:

e Start with 21 sticks (standard game)
e Players selects 1, 2 or 3 sticks
* Player selecting last stick loses

You can program the game having alternating players or if you would like to really

get creative, you could pit yourself against the computer and have the computer
learn how to win at the game.

26

Summing Up

i hope you enjoyed these Labs and that they encourage you to explore Python,
electronics and the raspi. There are many more single board computers and
electronic components to explore. The website http://aarphacker.com will provide
all the written materials and code for this course and also be a source for other
resources to continue your exploration.

Resources

Buying hardware:
https://www.adafruit.com/
http://www.evilmadscientist.com/
http://makezine.com/

Raspberry pi info:
http://www.raspberrypi.org/

Check the web site at aarphacker.com!

Thanks

[would like to thank all the experimenters on the web who provided insight into the
marvels of python and the raspi. This includes:

* http://www.rpiblog.com

* https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/

* https://learn.adafruit.com/category/raspberry-pi

* https://projects.drogon.net/raspberry-pi/gpio-examples/tux-crossing/gpio-
examples-1-a-single-led/

[would like to thank Leah and Kathy Vesonder for carefully reviewing this
document for clarity, consistency, grammar and common sense.

27

