STEM WORKSHOP
Stevens Institute of Technology

Version 2.12
Gregg Vesonder

Welcome!

These Labs use a Raspberry Pi single board computer and a breadboard. There are
many Kits available, many for under $100. For a listing of resources, code and this
document, visit my web site at http://aarphacker.com . I hope you enjoy these Labs
and please send comments to vesonder@mac.com.

Lab 1: Light!

One of the popular examples to do on a Raspberry Pi or raspi is to make a LED (Light
Emitting Diode) blink. This requires wiring a breadboard connected to the raspi
with a LED and accompanying resistor, writing the code and running it. However
first we are just going to light up a LED to understand the circuit

1) Parts list:
e LED
* Resistor under 1000 ohms
e 2 jumper wires, 1 black and 1 red
2) Make sure the raspi is disconnected from the power.
3) In the parts list picture you will notice that the LED has two leads and that
one is longer than the other. That is the positive lead and, by elimination, the

1

shorter is the negative lead! If some prankster, snipped both leads to the
same size you could look at the bulb and see that one of the leads expands to
a squarish area, which is attached to the negative lead. Another sign is that
usually the lower ring on the LED bulb is flat on the negative side.

4) Take the led, and on the fghij rows, place the positive element in row 23,
column j and the negative element in (25, j) - note from now on [will use this
(row, column) notation. It should look like this:

s . B
Nnusaees s 22 s
2204 &« &a a8 a r
234 s & 8 8 L 23 - n
24 4 & & & & s &8 & 24
25..... e @ a = 25 an
% & & & & & ""3‘26 as

TR R R PR —_

a8 8 0B LI -

£ E E B - —_—

TR R R -

abcde f

5) Now itis time to add the resistor. In the picture above note that each row
has five slots. Each of these slots is electrically connected to each other. So if
[want to attach something to the positive lead I can use the slots in row 23 f-i
to connect them. That is what makes breadboards special allowing
experimenters like us to make quick connections. [am taking advantage of
this to connect the resistor. First I bent the leads of the resistor to make it
easier to insert into the board (yours are already bent). Place one of the
leads, either will work, in (23,i). Place the other end of the resistor lead in

2

©Gregg Vesonder

(20,1). Your board should resemble this:

!uu-

I V)

oo

NN N

LK BB

CEE

o o

R

o m

w » ow B " "

cen®®27|

‘.I'.zs n "

...QIZQ n "

‘..ﬂ'30
ook 4 -

6) On resistors. The resistor we are using is 330 ohms. The bands on the

7)

resistor represent the value of the resistor. This resistor has bands in order:
orange, orange, brown and gold. Orange stands for 3 and brown, when in the
3rd position, stands for x10. So the value is 33 x 10 or 330 ohms. (the bands
are aligned so that the gold or the silver band is at the far end). Why did we
use 330 ohms. Because that is a safe value for this LED. The resistor lowers
the current flow so we do not burn up the LED. It depends on a few factors
beyond the scope of this class but worth exploring on the web.
Attach the jumper wires. By convention the black wire always links ground
to the negative lead. Place one end of the jumper wire into a slot on row 25,
connected to the negative lead of the led. In the picture it is attached to
(25,g). Insert the other end into a ground slot of the interface board, row 10.
The interface board “extends “ the interface pins of the raspi to the
breadboard. I selected the ground slot, labeled GND on the right hand side of
the board, represented by slot (10,i). If you look carefully you will see GND
labeled at that slot on the board. Next attach the red wire to power, in this

case 5 volts. Insert the red jumper in row 1, in the picture it is (1,j).

8) Time to testit! First, please have your instructor check your wiring.
After the instructor checks your wiring power up the raspi by inserting the
micro usb connector into the raspi. The LED lights! Congratulations you
have wired your first electronic circuit! Unplug the raspi and onto your next
adventure.

Lab 2: You Blinked!

In Lab 1 the raspi was used merely as a power source. We used none of its ability to
actually control circuits. In this Lab you will program the LED to blink. There is a
lot going on in this Lab, it provides the foundation for the rest of the Labs. First lets
build the circuit we will use.

1) The parts are the same as the first Lab: a 3304 resistor, an LED and a red
and a black jumper wire. Q is the symbol for ohms, the resistance value of a
resistor that we discussed in Lab 1.

4
©Gregg Vesonder

2) Wire the circuit exactly as you wired it in Lab 1 with one exception, instead of
placing the red jumper leading from the resistor to (1,j) place the end to (8,j);
this connects the power to a pin that can be controlled through the raspi by a

program. Your board should look like this:

3)

4)

€

L 7

“HHIHHHHA“““A
RN

|

Have your instructor check your board. After the instructor checks it, plug in
the power supply and wait for the computer to start. It will take a minute or
so.

If everything goes fine you will get a login prompt. Type pi - note that
whenever there is an entry on the screen I will use this font. You will
now be prompted for a password. Ask your instructor for it if the instructor
has not done so. If successful you should get the prompt: pi@raspberrypi
~$. Atthe prompt type startx. This command will take you from the
command line interface of linux to the window interface of linux. Your

5
©Gregg Vesonder

screen should look like this:

@ @ ©

MiFi Config Shutdown Molfrarn

2 g

| XTerminall IDLE Midlori
Pi Store Scratch IDLE 3

& K

5) Time to start the programming environment. For all of our Labs we will be
using the Python language and the IDLE programming environment. The
Python language is a popular language that is used by students, educators
and professional developers. Python was not named after a snake but after a
British comedy group, Monty Python. One of their movies, Monty Python and
the Holy Grail is on my top ten list. Back to programming. Point the mouse to
LXTerminal, and double click quickly on it. This takes you into a command
line window. Type sudo idle atthe prompt and this will launch the
Python programming environment. Point the mouse at the file menu item at
the top of the window, click and then select “New Window.” This will open
an editor in the IDLE programming environment. If everything goes right

your screen should now look like this:

ile Ed| File Edit Format Run Options Windows Help

ython

6) In order to save time, a partial version of the program blinkie.py has been
prepared for you. Load it now by moving the mouse to the file menu and
selecting “Open”. Choose blinkie.py, and your screen should look like this:

& ©

| File Edit Format Run Options Windows Help

MiFi Config Shutdown
IDLE
ULE _ Open -ax
Directory: /home/pi
@ \02 ¥ 3 .cache) .local
£ .config) Desktop
Pi Store Scratch & .dbus & grail
£ .fontconfig £ python_games
£ .gstreamer-0.10) blinkie.py
£ .gfs
P 3 .idlerc
Python
Garnes File name: blinkie.py Open
Files of type: Python files (*.py.*.pyw) Cancel
OCR Mathernatica

Ln: 1 Col: 0

Select open and the program will display in a simple editor. Your task is to
code two lines at the end of this program in the for loop. In the first line you
must replace the question marks with instructions. You must write the
complete second line, replacing the question marks on that line. Please note
that Python is white space sensitive. The indentation of lines following the

7

for command indicates that those lines belong within the for loop. When
you think you have completed the program, ask your instructor to check it
and then “Save” the file using the file menu and after the save completes,
select the Run menu and choose “Run module”. Watch the blinking light.
Congratulations, with this new found skill you are ready to control the world
through the raspi!

A bit on the program

The first part of any code is a description of what the code does. In Python #
indicates that what follows on that line is text and is not to be interpreted as code.
After describing the program, additional modules necessary for the operation of the
program are loaded through the import command. The module can be renamed
with the as command. The module RP1i.GPIO renamed as GPIO, provides the
program access to the pins on the computer that were wired on the breadboard.
The module time provides the sleep command that permits the code to do nothing
for a specified time, so that the LED will stay on or off for that interval.

The next section of the program sets up the environment for the blinking led. First
set a variable, repeat, that indicates how many times the LED should blink. The
next two lines talk about the code’s interface to the breadboard. GPIO.BOARD,
indicates that we are identifying the pins by the physical location of the pin on the
interface board, not the name that the raspi board uses, which would be #23 and is
labeled as such on the interface board. Given that the next line indicates the pin, 16.
It is 16 because, facing the board the numbering starts at the upper left corner of the
interface board as 1, the upper right corner as 2 and continues to alternate.
Therefore all odd pin numbers are on the left hand side and even pins on the right
hand side. The jumper wire was inserted in (8,j) which counting is 16. An easy way
is just to double the row number to get the addressable pin number. Since the pin
will be used to light theLEDit is an OUT port. If the port was used to collect a button
press that the software would read it would be an IN port, since it would input data
to the program.

This brings us to the for loop. The for loop is a way to repeat a set of commands
for a specified number of times. As you learn Python, you will discover that there
are many wondrous ways to specify this, but the current code uses a basic count
variable which we set as repeat. Loops and other Python mechanisms end their
description with a : . Usually that : will be followed by indented lines. The
indentation indicates that those lines are part of the body of the for loop.

The first line in the body of the for loop turns on the LED by setting the pin to
HIGH. time.sleep then sleeps, i.e., does nothing for the interval specified within
the parentheses which indicates the number of seconds to sleep. The next two lines
you contribute. What do you want to do next? Turn off the LED and wait. So if the
LED is turned on by setting it to HIGH then turn off the LED by setting it to ???. It
should then stay off for a time before it begins the next loop. The last command
ensures that the program ends with all pins in a default state. Phew! Here’s the code:

8

blinkie.py, a progr to blink an led
based on a program by Rahul Kar
http://www.rpiblog.com

o H R

#add some essential modules
#

import RPi.GPIO as GPIO
import time

GPIO provides access to the board pins
from the program.

time provides us with a sleep capability
so that we can add a delay

S

repeat = 60

#
#indicates how many times to blink
#

#
#setup board access
#

GPIO.setmode (GPIO.BOARD)
GPIO.setup (16, GPIO.OUT)

for i in range(0,repeat):
GPIO.output(l6, GPIO.HIGH)
time.sleep(l)
GPIO.output(l6, GPIO.LOW)
time.sleep(l)

#

#cleanup

#
GPIO.cleanup()

Lab 3: Help!

In this Lab we will use all we have learned to this point to send a distress message to
the world. An international indicator of distress is SOS, the acronym has been
described as an abbreviation for “Save Our Souls”, “Save Our Ship” or even “Send
Out Succour”! More on the history of SOS can be found in wikipedia. Our task is to
use the LED to send out a constant SOS to the world. The way we will do this is to

vary the duration of the blinks and that can be used to send Morse Code.

Morse Code transmits information as a series of on-off lights, tones, clicks of a
certain duration. It has been around since the mid 1800s and is still in use today.
Again Wikipedia has an excellent article on its history.

Letters in Morse Code are sent as a series of dots (sometimes called dits) and
dashes. A dash is 3 times longer than a dot. Letters are a collection of dots and
dashes. The morse code for a S is 3 dots, and for an O is 3 dashes. A dash is 3 times
longer than a dot. There are also specific pauses between dots and dashes, letters
and words to indicate the various separators. This table summarizes the
relationship:

Element Units of duration

dot

dash

Pause between dot or dash

Pause between letters

N W = W=

Pause between words

So our goal in this program is to have the board, through the led, send out a
continuous SOS signal.

1) First check the board. If you have not done so wire the board as in Lab 2.

2) Now start a new IDLE session by typing sudo idle atthe command line.
When the IDLE screen appears, select “File” with your mouse and then select
“New Window”. When the Window appears, select File and then Open with
your mouse and load the sos.py file.

3) In this programming task you must code the S, O and SOS Python functions.
Ask your instructor if you are having difficulty.

4) When you think you have completed the program, ask your instructor to
check it and then “Save” the file using the file menu and after the save
completes, select the Run menu and choose “Run module”. Now just wait
until help comes to Save Our Ship!

A bit on the code

This code builds on the code of blinkie.py. The new thing introduced is functions. A
function provides a way to capture code that is used frequently. A function should
represent one task. In this case our tasks were building dits, dashes, pauses, letters

10

and a word, SOS. Functions can be built from other functions and this becomes a
very powerful tool. In Python we define a function by starting with the special word
def, then name the function (the name should be a clear indication of what it does)
and then provide a list of zero or more arguments, items that you want the function
to use. In this case we always passed unit, which was the duration of one sleep
unit, later set to 0.1 or a tenth of a second. The identifying line of the function ends
with a : signifying that the indented lines that follow belong with the function.
return indicates the end of each of these functions. In Python you do not have to
use return to end a function but I think it is useful, especially in Python, since
otherwise the end is indicated by lack of indentation. return can also return
values to a calling module but that is beyond this Lab!

One final aspect to this program is the while True: statement. This provides a
way for us to loop until the program is interrupted. Stop the program by selecting
“Exit” in the file menu. In effect the loop can go on forever since a while body loops
if the condition is True. Since the condition in this case is True, it always loops.
Usingwhile True isaconvenient way for waiting an indeterminate amount of
time for input. In this case our rescue ship home! Here’s the code for the Lab:

#

#s50s.py

#program to do morse code

#

#import necessary libraries.

#GPIo accesses the ports of Raspi

#time provides us wit hslep

#

import RPi.GPIO as GPIO

import time

#

#morse code info

sos in mrse code is:

... --- ...

#dashes are 3 times longer than

#dit. 1 unit space within a letter

3 unit space between letters,

7 unit space between words

#

repeat = 50

pin = 16

GPIO.setmode(GPIO.BOARD)

GPIO.setup(pin,GPIO.OUT)

#

define dit (dot)

#

def dit(unit):
GPIO.output(pin, GPIO.HIGH)
time.sleep(unit)
GPIO.output(pin, GPIO.LOW)

11

time.sleep(unit)
#pause between elements of a letter
return

def dash(unit):
GPIO.output(pin, GPIO.HIGH)
time.sleep(unit * 3)
#dash is 3 times dit
GPIO.output(pin, GPIO.LOW)
time.sleep(unit)
#pause between elements of a letter
return

def letter_ pause(unit):
time.sleep(unit * 2)
why 2? each unit has a pause
at end, just add 2 more
to make it 3.
return

def word _pause(unit):
time.sleep(unit * 6)
again accommodating
unit pause
return

def s _letter(unit):
#code S
return

def o_letter(unit):
#code O
return

def sos(unit):

#code SOS
return

#

for ever

#

while True:
sos(0.1)

#

#time to cleanup

#

GPIO.cleanup()

12

Lab 4: Make it So(s)

The last lab demonstrated that software can affect physical devices and use them to
send information. But how can humans send information to the raspi? In the first
labs we demonstrated output to the physical world but what about input from the
physical world. This lab demonstrates simple input to the raspi. In this lab we will
wire a button to the raspi and when the button is pushed the raspi will begin
sending SOS. Now we can control when the SOS message is sent. So our goal is to
wire and add software so that an SOS is sent only when we want it to be, when
Captain Picard wants us to “make it so(s).”

N =

. Start with the circuit from Lab 3 (actually Lab 2).

In this lab we will add more to the breadboard. Our parts list is:

* 1 button

* 3jumpers, 1longred, 1 green and 1 black

* 110,000 Q resistor (bands are brown, black, orange)
The button fits in the circuit board in only 2 possible ways, either would be
correct. Have the button straddle the channel in the middle of the board.
The pins should be plugged into (30,f), (28,f), (30,c) and (28,¢c). Itis
important to place it there to ensure that when you press the button you do
not disturb the other wiring.
Next take the long red jumper, insert it first in (30,j) and insert the other end
in slot (1,a); you may have to lift the ribbon cable. Slot (1,a) is connected to
one of the 3.3v pins on the breakout board. This connects one side of the
button to the 3.3v.
Take a green jumper and insert it first in slot (28, i) and then in slot (9,j).
This connects the button to pin 18 on theboard.
Take the 10,000 (resistor and insert one leg in (28,j) and the other leg to the
right, same row ,in the blue minus column (28,-) if you will.
Take the black jumper insert one end in (3,j) and the other in (1,-). This
provides ground from the raspi to the ground row, making it a true ground
row.
All of this was to wire the button. We first attached one leg of the button to
power (step 3) and the other leg of the button to both ground and pin 18 on
the breadboard (steps 4-6). When the button is pressed a circuit is
established and current flows to pin 18 pulling it high, indicating a button
press. The resistor was part of the circuit to protect pin 18. Your finished

13

board should look like this:

)

© W N OEWON
»
-

— —
- o

~N

s

[4

7

o

-

E R R 34
4 5 A8

5 © »

A R R KN
PR s

Coding Task

Have your instructor check your circuit before you plug in the raspi! Your coding
task is to first complete the GPI0. setup for the button and then construct the loop

14
©Gregg Vesonder

that tests for the button push and if pushed signals SOS. As always, do not read “A
bit on the code” until you have completed your Lab.

A bit on the code

This project is interesting for several reasons. First, let’s discuss the hardware setup
(ves I know it is not code but it affects the code). This is the first Lab where the
board is crowded due to the number of elements, mostly jumper wires. You should
think carefully about placement of the elements on the board, both to make it easy
on the user and ensure that the user cannot inadvertently damage the setup. One
nod to this was placing the button at the bottom and trying to move jumpers away
from the button. There is a way to implement a cleaner design involving the large,
red jumper connecting 3.3 volts. Do you have any suggestions to improve it?

The current design sacrifices simplicity of the board setup for simplicity in the code.
Note that the GPI0. setup line was fairly straightforward, as was the loop,
requiring only one more line, an i f statement. The i f statement itself was fairly
simple, the trick was using white space appropriately to signify the bodies of both
the if and while statements. There was an alternate design that simplified the
breadboard setup and used the built-in, software controlled resistors of the raspi.
This alternate design had an obtuse declaration, GPI0.setup(button_pin,
GPIO.IN, pull_up_down = GPIO.PUD_UP),to setup the software controlled
resistors in the raspi. Similarly the loop involved a body element that also is more
complex: GPI0.wait_for_edge(button_pin, GPIO.RISING). The explanation
for this line of code is beyond the scope of this course , but it involves waiting for the
initiation of a change in state of the signal from the button. Our experiments also
indicated that using the hardware resistor resulted in a more accurate detection of
the button press.

The new code construct introduced in this Lab was the i f statement. The if
statement involves testing the condition after the i f to determine whether it is
True (the logical elements True and False in Python begin with a capital T and F).
If it is True, as in not zero, then the body of the if statement is executed, else the
body is ignored and it proceeds to the next statement after the body. In our
example, if GPIO.input(button pin):, if GPIO.input returnsa value
greater than 0 indicating the switch is pressed, the body of the i f is executed,
s0s(0.1),if not the control passes to the while loop and the i f is tested yet
again. The next statement after the body of an i f statement can bean else
statement or an e11 f (else if) which can perform further tests on variables or
values. For experienced language folks, e11i f can simulate switch or case
statements in other languages. In this example an i f was sufficient. Here’s the code
for the Lab:

#
#alarm.py

15

program to activate
sos on a button press

#

#import necessary libraries.
#GPIo accesses the ports of Raspi
#time provides us wit hslep

#

import RPi.GPIO as GPIO
import time

#

#morse code info
sos in morse code is:

#

#dashes are 3 times longer than

#dit. 1 unit space within a letter

3
7

unit space between letters,
unit space between words

button_pin will control
button using pin 18

#

#
#
set up GPIO ports
#
#

led_pin = 16

button_pin = 18
GPIO0.setmode(GPIO.BOARD)
GPIO.setup(button_pin, GPIO.IN)
GPIO.setup(led_pin,GPI0.0UT)

#

define dit (dot)

#
def

def

def

dit(unit):

GPIO.output(led_pin, GPIO.HIGH)
time.sleep(unit)
GPIO.output(led_pin, GPIO.LOW)
time.sleep(unit)

#pause between elements of a letter
return

dash(unit):

GPIO.output(led_pin, GPIO.HIGH)
time.sleep(unit * 3)

#dash is 3 times dit
GPIO.output(led_pin, GPIO.LOW)
time.sleep(unit)

#pause between elements of a letter
return

letter_pause(unit):

time.sleep(unit * 2)
why 2?7 each unit has a pause

16

at end, just add 2 more
to make it 3.
return

def word_pause(unit):
time.sleep(unit * 6)
again accommodating
unit pause
return

def s_letter(unit):
dit(unit)
dit(unit)
dit(unit)
return

def o_letter(unit):
dash(unit)
dash(unit)
dash(unit)
return

def sos(unit):
s_letter(unit)
letter_pause(unit)
o_letter(unit)
letter_pause(unit)
s_letter(unit)
word_pause(unit)

return
#
for ever
#

while True:

if GPIO.input(button_pin):

while True:
sos(0.1)
#
#time to cleanup
#

GPIO.cleanup()

17

Lab 5: Was it a Dit or Dah?

One challenge with using Morse Code to send messages is that it depends on your
potential rescuers differentiating between a dot/dit and a dash/dah. This is further
complicated by the fact that if your raspberry pi is doing a lot of other tasks, sleep
becomes less accurate and dots may be elongated to look closer to dashes. One way
to combat that is to use redundant cues providing multiple ways to determine a dot
or a dash. This Lab will do just that.

The wiring for this Lab will be different from the previous labs. The wiring of the
first four Labs was simplified to ease the patient reader into electronics. The key
simplification was that we were relying on the raspi control pins to provide the
power. Since in this Lab we will have more power needs, we are shifting to a more
conventional wiring of our breadboard with a “separate” power source. We are
using the power pins from the raspberry pi to provide us with power. The
raspberry pi has two sources of power, 3.3 volts and 5 volts. This should be clear
from this diagram from http://elinux.org/RPi_Low-level _peripherals:

R-Pi GPIO left
bottom top
P1-01 P1-02

wirower [0 @) svrower
IR @) @ e
RIS @ @ wme
3 @ © woumo
Grond @ (0) cei0 15 ®xD)
worr @ @ Gavclo
nonl @ @ woms
wozz @ @ woz
wsrower (0) @) crio24
cro10mosh @) @) cround
crososo @) @ crozs
cro1scw @ @ crosco
comnd @) @ cro7cen

P1-25 P1-26
bottom top
R1: Revision 1 right
R2: Revision 2

These pins correspond to the pin placement on the breakout board on the
breadboard. So, referring to the numbering scheme describe in Lab 1, 3.3 volts are
available from pin 1 and pin 17 and 5 volts is available from pins 2 and 4. This Lab
will use 3.3 volts. In order to easily access the 3.3 volts we will use the power and
ground columns on the right hand side of the board. The entire circuit photo is
provided for reference as the wiring proceeds.

18

SRRRERTIR TRV MM

[—
—
.
]
]
e
)
e
i
SRR
e
-
-
—_—
—
——
—
..
"

1. Check that the the raspberry pi is not connected to power. Start with a bare

breakout board, breadboard.

2. Unlike the 5 row columns on either side of the divide of the breadboard, the 2
separate columns on each end are linked electrically not by row, but by
column. Therefore when power is provided to the “+”, red row (1,+) in our
notation, (2,+) to (30,+) can provide power. Similarly if (1,-) is grounded,
(2,-) to (30,-) provides ground. Therefore we establish power and ground b,
on the left hand side using breadboard pin 1, left hand side(1, a) and
connecting it to right hand side (1,+). Itis best to use a red or orange jumper
to do this. Note the remainder of the connections will be on the right hand
side. Ground will be established by connecting (3,i) to (1,-).

. Place the yellow LED with the positive (longer) leg in (21,h) and the negative
in (22,h). Place a 330Q resistor leg in (21, j) and the other end of the leg in
(21,+). Place one end of a green jumper in (22,g) and the other end of the
jumper to (8,i), connecting the yellow LED to pin 12.

. Place the red LED with the positive leg in (28,i) and the negative leg in (29,i).
Place a 3301 resistor leg in (28,j) and the other leg in (28,+). Place one end

19

of a blue jumper wire in (29,j) and the other end in (6,j) connecting the red
LED to pin 16.

Coding Task

Have your instructor check the circuit. Power up the raspberry pi, startx and then
launch a shell window and sudo idle. Your coding task is to add the code to
operate the second LED and code the loop for it. Note the duration of sleep
provided by the loop may need to be altered a bit.

A bit on the code

The code for this task adds no new coding constructs but it does add some logic
twists in controlling items on the breadboard. Since two LEDs are now powered,
the trickle of power the logic pins could provide was inadequate. We had to add
power to the circuit and rely on the pin to complete the circuit when commanded by
linking ground and closing the circuit. Therefore to close the circuit the pin needed
to be pulled LOW and to open the circuit and turn off the light, it was pulled HIGH.

#

#sosry.py

#program to do morse code

#and provide redundant cues
#for dot and dash using yellow
#and red LEDs

#

#import necessary libraries.
#GPIo accesses the ports of Raspi
#time provides us with sleep

#

import RPi.GPIO as GPIO

import time

#

#morse code info

#s0s 1in morse code is:

ool —m

#dashes are 3 times longer than
#dit. 1 unit space within a letter
3 unit space between letters,
7 unit space between words

#

repeat = 50

pin = 12

#

#setup pin 2

#

#establish 2 pins

#to control LEDs

#

GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin,GPIO0.0UT)

20

GPIO.setup(pin2,GPIO0.OUT)

#
define dit (dot)

note that LOW and HIGH
have reversed, pulling
pin LOW provides power
#
d

ef dit(unit):
GPIO.output(pin,GPIO.LOW)
time.sleep(unit)
GPIO.output(pin,GPIO.HIGH)
time.sleep(unit)
#pause between elements of a letter
return

def dash(unit):
#

#define dash

#

def letter_pause(unit):
time.sleep(unit * 2)
why 2?7 each unit has a pause
at end, just add 2 more
to make it 3.
return

def word_pause(unit):
time.sleep(unit * 6)
again accommodating
unit pause
return

def s_letter(unit):
dit(unit)
dit(unit)
dit(unit)
#code S
return

def o_letter(unit):
dash(unit)
dash(unit)
dash(unit)
#code O
return

def sos(unit):

s_letter(unit)
letter_pause(unit)

21

#

o_letter(unit)
letter_pause(unit)
s_letter(unit)
word_pause(unit)
#code SOS

return

for ever

#

#

#define loop

#

#

#time to cleanup

#

GPIO.cleanup()

Summing Up

We hope you enjoyed these Labs and that it encourages you to explore Python,
electronics and the raspi. There are many more single board computers and
electronic components to explore. The website http://aarphacker.com will provide
all the written materials and code for this course and also be a source for other
resources to continue your exploration.

Thanks

[would like to thank Matt Amoroso for his advice, comments and testing of this set
of Labs and for serving as a Lab instructor.

[also would like to thank all the experimenters on the web who provided insight
into the marvels of python and the raspi. This includes:

http://www.rpiblog.com
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/
https://learn.adafruit.com/category/raspberry-pi
https://projects.drogon.net/raspberry-pi/gpio-examples/tux-crossing/gpio-
examples-1-a-single-led/

22

Lastly I thanks to Kathy Vesonder for carefully reviewing this code for clarity,
consistency, grammar and common sense. It has been a wonderful forty years!

23

