
	

	 	
©2019	Gregg	Vesonder	

1	

ECOES: Software Engineering
Version 20190712
Gregg Vesonder
	
	

Welcome!
	
These	Labs	use	a	Raspberry	Pi	single	board	computer	and	a	breadboard.		There	are	
many	kits	available,	many	for	under	$100.		For	a	listing	of	resources,	code	and	this	
document,	visit	the	web	site	at	http://aarphacker.com	.		I	hope	you	enjoy	these	Labs	
and	please	send	comments	to	vesonder@mac.com.			
	

Lab 1: You Blinked!
In	this	Lab	you	will	program	the	LED	to	blink.		There	is	a	lot	going	on	in	this	Lab,	it	
provides	the	foundation	for	the	rest	of	the	Labs.		First	let’s	build	the	circuit	we	will	
use.		From	a	coding	perspective	we	will	be	working	with	variables	and	loops.	
	

1) The	parts	are:		a	1000Ω	resistor	and	2	M-F	jumper	wires	of	different	colors	
and	a	LED.	Ω	is	the	symbol	for	ohms,	the	resistance	value	of	a	resistor.	

	
	

2) Wire	the	circuit	on	the	breadboard	as	pictured:		Your	board	should	look	this:		

	

	 	
©2019	Gregg	Vesonder	

2	

	

	 	
©2019	Gregg	Vesonder	

3	

	
	
3) Have	your	instructor	check	your	board.		After	the	instructor	checks	it,	plug	in	

the	power	supply	and	wait	for	the	computer	to	start.		It	will	take	a	minute	or	
so.	

4) If	everything	goes	fine	you	will	be	taken	into	the	raspberry	pi	window	
system.		However	if	you	get	a	login	prompt,	type	pi –	note	that	whenever	
there	is	an	entry	on	the	screen	I	will	use	this font.		You	will	now	be	
prompted	for	a	password.		Ask	your	instructor	for	it	if	the	instructor	has	not	
told	you.		If	successful	you	should	get	the	prompt:	pi@raspberrypi ~$.		
At	the	prompt	type	startx.		This	command	will	take	you	from	the	command	
line	interface	of	linux	to	the	window	interface	of	linux.		In	either	case	your	

	

	 	
©2019	Gregg	Vesonder	

4	

screen	should	look	like	this:	

	
5) Time	to	start	the	programming	environment.		For	all	of	our	Labs	we	will	be	

using	the	Python	language	and	the	IDLE	programming	environment.		The	
Python	language	is	a	popular	language	that	is	used	by	students,	educators	
and	professional	developers.		Python	was	not	named	after	a	snake	but	after	a	
British	comedy	group,	Monty	Python.		One	of	their	movies,	Monty	Python	and	
the	Holy	Grail	is	on	my	top	ten	list.		Back	to	programming.		Point	the	mouse	to	
the	terminal	icon,	and	double	click	quickly	on	it.		This	takes	you	into	a	
command	line	window.		

	

	 	
©2019	Gregg	Vesonder	

5	

Type	idle	at	the	prompt	and	this	will	launch	the	Python	programming	
environment.	

	

	 	
©2019	Gregg	Vesonder	

6	

	
Point	the	mouse	at	the	file	menu	item	at	the	top	of	the	window,	click	and	then	
select	“New	Window.”		This	will	open	an	editor	in	the	IDLE	programming	
environment.	If	everything	goes	right	your	screen	should	now	look	like	this:	

	

	

	 	
©2019	Gregg	Vesonder	

7	

6) In	order	to	save	time,	a	partial	version	of	the	program	blinkie.py	has	been	
prepared	for	you.		Load	it	now	by	moving	the	mouse	to	the	file	menu	and	
selecting	“Open”.				Choose	blinkie.py,	and	your	screen	should	look	like	this:

	
Select	open	and	the	program	will	display	in	a	simple	editor.		Your	task	is	to	
code	two	lines	at	the	end	of	this	program	in	the	for	loop.		In	the	first	line	you	
must	replace	the	question	marks	with	instructions.		You	must	write	the	
complete	second	line,	replacing	the	question	marks	on	that	line.		Please	note	
that	Python	is	white	space	sensitive.		The	indentation	of	lines	following	the	
for	command	indicates	that	those	lines	belong	within	the	for	loop.		When	
you	think	you	have	completed	the	program,	ask	your	instructor	to	check	it	
and	then	“Save”	the	file	using	the	file	menu	and	after	the	save	completes,	
select	the	Run	menu	and	choose	“Run	module”.		Watch	the	blinking	light.		
Congratulations,	with	this	newfound	skill	you	are	ready	to	control	the	world	
through	the	raspi!	

A bit on the program
	
The	first	part	of	any	code	is	a	description	of	what	the	code	does.		In	Python	#	
indicates	that	what	follows	on	that	line	is	text	and	is	not	to	be	interpreted	as	code.		
After	describing	the	program,	additional	modules	necessary	for	the	operation	of	the	
program	are	loaded	through	the	import	command.		The	module	can	be	renamed	
with	the	as	command.		The	module	RPi.GPIO	renamed	as	GPIO,	provides	the	
program	access	to	the	pins	on	the	computer	that	were	wired	on	the	breadboard.		
The	module	time	provides	the	sleep	command	that	permits	the	code	to	do	nothing	
for	a	specified	time,	so	that	the	LED	will	stay	on	or	off	for	that	interval.	
	

	

	 	
©2019	Gregg	Vesonder	

8	

The	next	section	of	the	program	sets	up	the	environment	for	the	blinking	led.		First	
set	a	variable,	repeat,	that	indicates	how	many	times	the	LED	should	blink.	The	
next	two	lines	talk	about	the	code’s	interface	to	the	breadboard.		GPIO.BOARD,	
indicates	that	we	are	identifying	the	pins	by	the	physical	location	of	the	pin	on	the	
interface	board,	not	the	logical	name	that	the	raspi	board.	
	
This	brings	us	to	the	for	loop.		The	for	loop	is	a	way	to	repeat	a	set	of	commands	
for	a	specified	number	of	times.		As	you	learn	Python,	you	will	discover	that	there	
are	many	wondrous	ways	to	specify	this,	but	the	current	code	uses	a	basic	count	
variable	which	we	set	as	repeat.		Loops	and	other	Python	mechanisms	end	their	
description	with	a	:	.		Usually	that	:	will	be	followed	by	indented	lines.		The	
indentation	indicates	that	those	lines	are	part	of	the	body	of	the	for	loop.	
The	first	line	in	the	body	of	the	for	loop	turns	on	the	LED	by	setting	the	pin	to	
HIGH.	time.sleep	then	sleeps,	i.e.,	does	nothing	for	the	interval	specified	within	
the	parentheses	which	indicates	the	number	of	seconds	to	sleep.		The	next	two	lines	
you	contribute.		What	do	you	want	to	do	next?		Turn	off	the	LED	and	wait.		So	if	the	
LED	is	turned	on	by	setting	it	to	HIGH	then	turn	off	the	LED	by	setting	it	to	???.		It	
should	then	stay	off	for	a	time	before	it	begins	the	next	loop.		The	last	command	
ensures	that	the	program	ends	with	all	pins	in	a	default	state.	Phew!	Here’s	the	code:	

blinkie.py, a program to blink an led
based on a program by Rahul Kar
http://www.rpiblog.com

add some essential modules

import RPi.GPIO as GPIO
import time

GPIO provides access to the board pins
from the program.
time provides us with a sleep capability
so that we can add a delay

##declare repeat

repeat indicates how many times to blink

#setup board access

	

	 	
©2019	Gregg	Vesonder	

9	

GPIO.setmode(GPIO.BOARD)
GPIO.setup(8, GPIO.OUT)

##do a for loop with repeat

 GPIO.output(8, GPIO.HIGH)
 time.sleep(1)
 GPIO.output(8, GPIO.LOW)
 time.sleep(1)

#cleanup

GPIO.cleanup()

Lab 2: Help!
	
In	this	Lab	we	will	use	all	we	have	learned	to	this	point	to	send	a	distress	message	to	
the	world.		An	international	indicator	of	distress	is	SOS,	the	acronym	has	been	
described	as	an	abbreviation	for	“Save	Our	Souls”,	“Save	Our	Ship”	or	even	“Send	
Out	Succour”!		More	on	the	history	of	SOS	can	be	found	in	wikipedia.		Our	task	is	to	
use	the	LED	to	send	out	a	constant	SOS	to	the	world.		The	way	we	will	do	this	is	to	
vary	the	duration	of	the	blinks	and	that	can	be	used	to	send	Morse	Code.	
	
From	a	coding	perspective	we	will	be	introduced	to	a	new	looping	construct	while,	
the	logical	value	True,	functions,	strings	and	printing.		That’s	a	lot	but	with	these	
tools	you	are	well	on	your	way	to	learning	python!	
	
Morse	Code	transmits	information	as	a	series	of	on-off	lights,	tones,	clicks	of	a	
certain	duration.	It	has	been	around	since	the	mid	1800s	and	is	still	in	use	today.		
Again	Wikipedia	has	an	excellent	article	on	its	history.	
	
Letters	in	Morse	Code	are	sent	as	a	series	of	dots	(sometimes	called	dits)	and	
dashes.		A	dash	is	3	times	longer	than	a	dot.		Letters	are	a	collection	of	dots	and	
dashes.		The	morse	code	for	a	S	is	3	dots,	and	for	an	O	is	3	dashes.		A	dash	is	3	times	
longer	than	a	dot.		There	are	also	specific	pauses	between	dots	and	dashes,	letters	
and	words	to	indicate	the	various	separators.		This	table	summarizes	the	
relationship:	
	
Element	 Units	of	duration	
dot	 1	
dash	 3	

	

	 	
©2019	Gregg	Vesonder	

10	

Pause	between	dot	or	dash	 1	
Pause	between	letters	 3	
Pause	between	words	 7	
	
So	our	goal	in	this	program	is	to	have	the	board,	through	the	led,	send	out	a	
continuous	SOS	signal.	
	

1) First	check	the	board.		If	you	have	not	done	so	wire	the	board	as	in	Lab	2.	
2) Now	start	a	new	IDLE	session	by	typing	sudo idle	at	the	command	line.		

When	the	IDLE	screen	appears,	select	“File”	with	your	mouse	and	then	select	
“New	Window”.		When	the	Window	appears,	select	File	and	then	Open	with	
your	mouse	and	load	the	sos.py	file.	

3) In	this	programming	task	you	must	code	the	S,	O	and	SOS	Python	functions.		
Ask	your	instructor	if	you	are	having	difficulty.	

4) When	you	think	you	have	completed	the	program,	ask	your	instructor	to	
check	it	and	then	“Save”	the	file	using	the	file	menu	and	after	the	save	
completes,	select	the	Run	menu	and	choose	“Run	module”.		Now	just	wait	
until	help	comes	to	Save	Our	Ship!	

A bit on the code
	
This	code	builds	on	the	code	of	blinkie.py.		The	new	thing	introduced	is	functions.		A	
function	provides	a	way	to	capture	code	that	is	used	frequently.		A	function	should	
represent	one	task.		In	this	case	our	tasks	were	building	dits,	dashes,	pauses,	letters	
and	a	word,	SOS.	Functions	can	be	built	from	other	functions	and	this	becomes	a	
very	powerful	tool.		In	Python	we	define	a	function	by	starting	with	the	special	word	
def,	then	name	the	function	(the	name	should	be	a	clear	indication	of	what	it	does)	
and	then	provide	a	list	of	zero	or	more	arguments,	items	that	you	want	the	function	
to	use.		In	this	case	we	always	passed	unit,	which	was	the	duration	of	one	sleep	
unit,	later	set	to	0.1	or	a	tenth	of	a	second.		The	identifying	line	of	the	function	ends	
with	a	:	signifying	that	the	indented	lines	that	follow	belong	with	the	function.		
return	indicates	the	end	of	each	of	these	functions.		In	Python	you	do	not	have	to	
use	return	to	end	a	function	but	I	think	it	is	useful,	especially	in	Python,	since	
otherwise	the	end	is	indicated	by	lack	of	indentation.		return	can	also	return	
values	to	a	calling	module	but	that	is	beyond	this	Lab!	
	
One	final	aspect	to	this	program	is	the	while True:	statement.		This	provides	a	
way	for	us	to	loop	until	the	program	is	interrupted.		Stop	the	program	by	selecting	
“Exit”	in	the	file	menu.		In	effect	the	loop	can	go	on	forever	since	a	while	body	loops	
if	the	condition	is	True.		Since	the	condition	in	this	case	is	True,	it	always	loops.		
Using	while True	is	a	convenient	way	for	waiting	an	indeterminate	amount	of	
time	for	input.		In	this	case	our	rescue	ship	home!		Here’s	the	code	for	the	Lab:	
	

sos.py

	

	 	
©2019	Gregg	Vesonder	

11	

program to do morse code

import necessary libraries.
GPIo accesses the ports of Raspi
time provides us with sleep

import RPi.GPIO as GPIO
import time

morse code info
sos in morse code is:
... --- ...
dashes are 3 times longer than
dit. 1 unit space within a letter
3 unit space between letters,
7 unit space between words

repeat = 50
pin = 8
GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin,GPIO.OUT)

define dit (dot)

def dit(unit):
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(unit)
 GPIO.output(pin, GPIO.LOW)
 time.sleep(unit)
 #pause between elements of a letter
 return

def dash(unit):
 GPIO.output(pin, GPIO.HIGH)
 time.sleep(unit * 3)
 #dash is 3 times dit
 GPIO.output(pin, GPIO.LOW)
 time.sleep(unit)
 #pause between elements of a letter
 return

def letter_pause(unit):
 time.sleep(unit * 2)
 # why 2? each unit has a pause
 # at end, just add 2 more
 # to make it 3.
 return

	

	 	
©2019	Gregg	Vesonder	

12	

def word_pause(unit):
 time.sleep(unit * 6)
 # again accommodating
 # unit pause
 return

Define functions s_letter,
o_letter and sos

for ever

while True:
 sos(0.1)

#time to cleanup

GPIO.cleanup()

Lab 3: Roll Them!
	
Dungeons	and	Dragons	is	a	complex	role	playing	game	where	a	small	group	serves	
as	a	party	of	adventurers	taking	on	roles	such	as	a	wizard	and	one	person	serves	as	
the	dungeon	master	controlling	the	flow	of	the	game.		The	adventures	take	on	
challenging	monsters	and	other	challenges	and	fate	is	often	determined	by	rolling	a	
variety	of	dice.		Your	task	is	to	create	a	program	or	programs	that	act	as	six	sided,	
eight	sided,	ten	sided,	12	sided	and	20	sided	dice.		A	picture	of	some	D&D	dice	from	

	

	 	
©2019	Gregg	Vesonder	

13	

Wikipedia	is	provided	for	motivation!

	

Lab 4: Was it a Dit or Dah?
	
One	challenge	with	using	Morse	Code	to	send	messages	is	that	it	depends	on	your	
potential	rescuers	differentiating	between	a	dot/dit	and	a	dash/dah.		This	is	further	
complicated	by	the	fact	that	if	your	raspberry	pi	is	doing	a	lot	of	other	tasks,	sleep	
becomes	less	accurate	and	dots	may	be	elongated	to	look	closer	to	dashes.	One	way	
to	combat	that	is	to	use	redundant	cues	providing	multiple	ways	to	determine	a	dot	
or	a	dash.		This	Lab	will	do	just	that.	
	
The	wiring	for	this	Lab	will	be	different	from	the	previous	labs.		The	wiring	of	the	
first	four	Labs	was	simplified	to	ease	the	patient	reader	into	electronics.		The	key	
simplification	was	that	we	were	relying	on	the	raspi	control	pins	to	provide	the	
power.		Since	in	this	Lab	we	will	have	more	power	needs,	we	are	shifting	to	a	more	
conventional	wiring	of	our	breadboard	with	a	“separate”	power	source.		We	are	
using	the	power	pins	from	the	raspberry	pi	to	provide	us	with	power.		The	
raspberry	pi	has	two	sources	of	power,	3.3	volts	and	5	volts.		This	should	be	clear	
from	this	diagram:	
	
		
	

	

	 	
©2019	Gregg	Vesonder	

14	

	
	
	
	(These	pins	correspond	to	the	pin	placement	on	the	breakout	board	on	the	
breadboard.	So,	referring	to	the	numbering	scheme	describe	in	Lab	1,	3.3	volts	are	
available	from	pin	1	and	pin	17	and	5	volts	is	available	from	pins	2	and	4.		This	Lab	
will	use	3.3	volts.		In	order	to	easily	access	the	3.3	volts	we	will	use	the	power	and	
ground	columns	on	the	right	hand	side	of	the	board.		The	entire	circuit	photo	is	
provided	for	reference	as	the	wiring	proceeds.	
	

1. Check	that	the	raspberry	pi	is	not	connected	to	power.	Start	with	the	circuit	
you	made	in	Lab	1.		Essentially	you	are	replicating	the	circuit	from	Lab	1	with	
a	different	color	LED	and	using	pins	14	and	16	on	the	raspberry	pi	(see	
above).		Use	two	different	colored	M-F	jumpers.		Note	16	is	the	pin	number	
you	should	use	for	pin2	in	the	code.	

	

	 	
©2019	Gregg	Vesonder	

15	

2. The	circuit	wiring	should	look	like	this:	

	

Coding Task
Have	your	instructor	check	the	circuit.		Power	up	the	raspberry	pi,	startx	and	then	
launch	a	shell	window	and	idle.		Your	coding	task	is	to	add	the	code	to	operate	the	

	

	 	
©2019	Gregg	Vesonder	

16	

second	LED	and	code	the	loop	for	it.		Note	the	duration	of	sleep	provided	by	the	loop	
may	need	to	be	altered	a	bit.	

A bit on the code
The	code	for	this	task	adds	no	new	coding	constructs	but	it	does	add	some	logic	
twists	in	controlling	items	on	the	breadboard.		Since	two	LEDs	are	now	powered,	
the	trickle	of	power	the	logic	pins	could	provide	was	inadequate.		We	had	to	add	
power	to	the	circuit	and	rely	on	the	pin	to	complete	the	circuit	when	commanded	by	
linking	ground	and	closing	the	circuit.		Therefore	to	close	the	circuit	the	pin	needed	
to	be	pulled	LOW	and	to	open	the	circuit	and	turn	off	the	light,	it	was	pulled	HIGH.	
	

sosry.py
program to do morse code
and provide redundant cues
for dot and dash using yellow
and red LEDs

import necessary libraries.
GPIo accesses the ports of Raspi
time provides us with sleep

import RPi.GPIO as GPIO
import time

morse code info
sos in morse code is:
... --- ...
dashes are 3 times longer than
dit. 1 unit space within a letter
3 unit space between letters,
7 unit space between words

repeat = 50
pin = 8

setup pin 2
pin number on pi is 16

establish 2 pins
to control LEDs

GPIO.setmode(GPIO.BOARD)
GPIO.setup(pin,GPIO.OUT)
GPIO.setup(pin2,GPIO.OUT)

define dit (dot)

	

	 	
©2019	Gregg	Vesonder	

17	

note that LOW and HIGH
have reversed, pulling
pin LOW provides power

def dit(unit):
 GPIO.output(pin,GPIO.LOW)
 time.sleep(unit)
 GPIO.output(pin,GPIO.HIGH)
 time.sleep(unit)
 #pause between elements of a letter
 return

def dash(unit):

#define dash

def letter_pause(unit):
 time.sleep(unit * 2)
 # why 2? each unit has a pause
 # at end, just add 2 more
 # to make it 3.
 return

def word_pause(unit):
 time.sleep(unit * 6)
 # again accommodating
 # unit pause
 return

def s_letter(unit):
 dit(unit)
 dit(unit)
 dit(unit)
 #code S
 return

def o_letter(unit):
 dash(unit)
 dash(unit)
 dash(unit)
 #code O
 return

def sos(unit):
 s_letter(unit)
 letter_pause(unit)
 o_letter(unit)
 letter_pause(unit)

	

	 	
©2019	Gregg	Vesonder	

18	

 s_letter(unit)
 word_pause(unit)
 #code SOS
 return

for ever

define loop

time to cleanup

GPIO.cleanup()

Lab 5 The capital of South Dakota is?
	
Exploring	the	state	capital	program.		Sometimes	it	is	best	to	read	code.		Can	we	
generalize	this?	
	

https://github.com/pythonkc/beginners-python-
workshop/blob/master/_static/dependancies/state_capitals.py

capitals_dict = {
'Alabama' : 'Montgomery',
'Alaska' : 'Juneau',
'Arizona' : 'Phoenix',
'Arkansas' : 'Little Rock',
'California' : 'Sacramento',
'Colorado' : 'Denver',
'Connecticut' : 'Hartford',
'Delaware' : 'Dover',
'Florida' : 'Tallahassee',
'Georgia' : 'Atlanta',
'Hawaii' : 'Honolulu',
'Idaho' : 'Boise',
'Illinois' : 'Springfield',
'Indiana' : 'Indianapolis',

	

	 	
©2019	Gregg	Vesonder	

19	

'Iowa' : 'Des Moines',
'Kansas' : 'Topeka',
'Kentucky' : 'Frankfort',
'Louisiana' : 'Baton Rouge',
'Maine' : 'Augusta',
'Maryland' : 'Annapolis',
'Massachusetts' : 'Boston',
'Michigan' : 'Lansing',
'Minnesota' : 'Saint Paul',
'Mississippi' : 'Jackson',
'Missouri' : 'Jefferson City',
'Montana' : 'Helena',
'Nebraska' : 'Lincoln',
'Nevada' : 'Carson City',
'New Hampshire' : 'Concord',
'New Jersey' : 'Trenton',
'New Mexico' : 'Santa Fe',
'New York' : 'Albany',
'North Carolina' : 'Raleigh',
'North Dakota' : 'Bismarck',
'Ohio' : 'Columbus',
'Oklahoma' : 'Oklahoma City',
'Oregon' : 'Salem',
'Pennsylvania' : 'Harrisburg',
'Rhode Island' : 'Providence',
'South Carolina' : 'Columbia',
'South Dakota' : 'Pierre',
'Tennessee' : 'Nashville',
'Texas' : 'Austin',
'Utah' : 'Salt Lake City',
'Vermont' : 'Montpelier',
'Virginia' : 'Richmond',
'Washington' : 'Olympia',
'West Virginia' : 'Charleston',
'Wisconsin' : 'Madison',
'Wyoming' : 'Cheyenne',
}

import random

while True:
 state = random.choice(capitals_dict.keys())
 capital = capitals_dict[state]
 capital_guess = raw_input("What is the capital of " +
state + "? ")
 if capital_guess == "Exit":
 print "Goodbye"
 break

	

	 	
©2019	Gregg	Vesonder	

20	

 if capital_guess == capital:
 print "Correct! Nice job."
 else:
 print "Incorrect. The capital of " + state + " is "
+ capital + "."

	

LAB 6 Shall we play a game?
	
In	the	early	80s	a	movie	called	War	Games	made	the	title	of	this	Lab	famous.		Here’s	
the	IMDb	description	of	the	game:		
	
A	young	man	finds	a	back	door	into	a	military	central	computer	in	which	reality	is	
confused	with	game-playing,	possibly	starting	World	War	III.	
	
Although	we	will	not	be	starting	World	War	III	today,	let’s	create	a	game	called	nim	
using	all	that	you	learned	today.				The	game	is	simple:	
	

• Start	with	21	sticks	(standard	game)	
• Players	selects	1,	2	or	3	sticks	
• Player	selecting	last	stick	loses	

	
You	can	program	the	game	having	alternating	players	or	if	you	would	like	to	really	
get	creative,	you	could	pit	yourself	against	the	computer	and	have	the	computer	
learn	how	to	win	at	the	game.				
	

Summing Up
	
I	hope	you	enjoyed	these	Labs	and	that	they	encourage	you	to	explore	Python,	
electronics	and	the	raspi.		There	are	many	more	single	board	computers	and	
electronic	components	to	explore.		The	website	http://aarphacker.com	will	provide	
all	the	written	materials	and	code	for	this	course	and	also	be	a	source	for	other	
resources	to	continue	your	exploration.	
	

Resources
	
Buying	hardware:	
https://www.adafruit.com/	
http://www.evilmadscientist.com/	

	

	 	
©2019	Gregg	Vesonder	

21	

http://makezine.com/	
http://sparkfun.com	
	
Raspberry	pi	info:	
http://www.raspberrypi.org/	
	
Check	the	web	site	at	aarphacker.com!	
	

Thanks
	
I	would	like	to	thank	all	the	experimenters	on	the	web	who	provided	insight	into	the	
marvels	of	python	and	the	raspi.		This	includes:			
	

• http://www.rpiblog.com	
• https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/	
• https://learn.adafruit.com/category/raspberry-pi	
• https://projects.drogon.net/raspberry-pi/gpio-examples/tux-crossing/gpio-

examples-1-a-single-led/	
	
I	would	like	to	thank	Leah	and	Kathy	Vesonder	for	carefully	reviewing	this	
document	for	clarity,	consistency,	grammar	and	common	sense.			

