
Class 5 CIS 573

Gregg Vesonder
University of Pennsylvania

Penn Engineering - Computer & Information Science
©2009 Gregg Vesonder

1

Roadmap

•  Survey
•  Continue on 3
•  Case Study
•  OO Design
•  Quality
•  Readings this class Somerville 27-29, Andersson

3-4
•  Readings next class: Mid Term
•  Readings next week – posted on wiki Sunday

2

Critical Dates

•  Every class project review
•  July 23rd Mid Term
•  August 6th log books due
•  August 11th project presentations
•  August 13th Final

3

Teams

•  Team 1 – Klein Keane, Beck, Buchman,
Richardson, Nunez

•  Team 2- Wilmarth, Caputo, Xiang, Francis,
Nanda

•  Team 3- Noronha, Fang, Huang
•  Team 4-Whitehead, Liu, Ratnakar

4

Project Reports

•  Presentation each class
•  Green, yellow, red –simplified model + gaps
•  Current pressing issues
•  What was done since last class
•  What will be done before next class
•  Gaps

5

Log Book

•  On a license plate: Source code is free
speech!

6

Case Study
1.  List the non-functional requirements and the associated stakeholder(s)

responsible for them
2.  From the text and appendices, sketch out the scenarios, indicating any

steps you may have added for completeness and continuity (using any
notation):
1.  Becoming a subscriber (both Torsen and Shah versions)
2.  Ordering a book
3.  Leaving the service

3.  Provide an overall critique of the “plan” for Saley and Tse listing elements
of risk, issues, analysis of his resource estimate, roles and responsibilities
and schedule. Draw on all of the information in the document for your
evaluation.

4.  How would you proceed? Which software process model would you use?
How would you assign the current managers roles and responsibilities? Do
you agree with Padalka? How would you acquire additional resources?
Would you use or add to internal resources, external resources or a
combination of internal and external resources?

7

Some Preliminaries

•  Object (state (variables), behavior (methods))
–  Instance, instance variables, instantiated, encapsulation

•  Message - everything an object can do is represented by its
message interface

•  Class - software blueprint including common elements of
objects that need not be repeated
–  Class variables

•  Inheritance
–  States and methods, override

•  Data containing instances and function containing classes
•  Polymorphism(overloading, method based; overriding,

inheritance based)

8

OO

•  Traditional techniques focus on functions of the system
•  OO focuses on identifying and interrelating the objects that

play a role in the system
•  Convergence to the UML, Unified Modeling Language, Booch,

Jacobson and Rumbaugh
•  Heuristic thoughts- keep objects simple and each method

should send messages to objects of a very limited set of
classes (more when we explore OO metrics)
–  Cohesion and coupling

9

OO Analysis and Design

•  OO Analysis = Requirements analysis + Domain
class selection
–  Product = Complete requirements document + domain

class model + basic sequence diagrams
–  Domain classes obtained via use cases -> sequence

diagrams and brainstorming/editing process
–  Use domain classes to organize requirements

•  OO Design = all other activities except coding
–  Product = complete detailed design ready for coding

Eric Braude, Software Design, John Wiley, 2004.

10

“Schools” of OO

•  European school, influenced by the Scandinavian
school of Programming, OO analysis and design is
modeling real world objects both animate and
inanimate

•  American school, OO focuses on data abstraction
and component reuse - identifying reusable
components and building an inheritance hierarchy.
–  “What matters is not how closely we model today’s reality

but how extensible and reusable our software is”

11

OO Viewpoints

•  Modeling (European) viewpoint - conceptual model of some
part of a real or imaginary world.
–  Each object has identity, is unique
–  Objects have substance, properties that hold and can be

discovered
–  Objects are implementations of abstract data types

•  Mutable state, variables of abstract data type
•  Operators to modify or inspect the state

–  Only way to access object
–  Interface to object

–  Object = identity + variables + operators or
–  Object = identity + state + behavior

12

OO Viewpoints - 2

•  Philosophical view - objects as existential abstractions, the
unifying notion underlying all computation
–  Beginning and end to objects
–  Eternal objects, e.g., integers

•  Not instantiated, cannot be changed
•  Software Engineering view - data abstractions encapsulating

data and operations
–  Object based languages encapsulates abstract data types

in modules whereas
–  Object oriented also includes inheritance

13

OO Viewpoints - 3

•  Implementation view
–  Continuous structure in memory, a record of data and

code elements
•  Formal view

–  Object viewed as a state machine with a finite set of
states and a finite set of state functions. State
functions map old states and inputs to new states and
inputs

•  While modeling conceptual viewpoint is stressed
•  Tensions between a problem oriented (analysis) vs. solution

oriented viewpoint (design)

14

Objects

•  Characterized by a set of attributes or properties
–  Attributes originate from Entity-Relationship Modeling

•  In ERM attributes represent intrinsic properties that do not
depend on other entities

•  Shared properties among objects are denoted as relationships

•  OO modeling uses attributes to denote any field in the
underlying data structure
–  State includes intrinsic and shared properties

•  State includes set of structural attributes and operations =
behavioral attributes.

–  Identity is an attribute

15

More on Objects

•  Programming level;
–  Objects having same set of of attributes belong to the same

class
–  Individual objects of the class are called instances, when they

are created they are instantiated
–  Objects not only encapsulate state but also behavior - the way

it is acted upon and acts upon other objects
–  Behavior of an object is described as the services provided by

that object
–  Services are invoked by sending messages from the requestor

to the object acted upon
–  Client server model of objects, client object requests services

from server object, services also are referred to as
responsibilities

16

Relations Between Objects

17

Relationship! Example!

Specialization/
generalization, isa!

Table isa furniture!

Whole-part, has! Table has tabletop!

Member-of, has! Library has member!

More on Relations

•  Generalization-specialization can be expressed as
a hierarchy
–  Single inheritance, tree
–  Multiple inheritance, directed acyclic graph
–  Define common attributes at a higher level and let

descendants inherit the attributes (abstraction)
–  Object hierarchy can be viewed as a type hierarchy,

chair and table are subtypes of furniture

18

More on Relations - 2

•  Part of relationship aggregates components
into a whole
–  It is a transitive relationship

•  Member-of relationship represents the
relation of a set and its neighbors
–  It is not transitive

19

OO Analysis

•  Not considered with instances - concerned
with object types, classes

•  Major goal- identify set of objects
(classes) with their attributes (states) and
their services (behavior)

20

OO Analysis and Design Schemes

•  Common notations of the schemes:
–  Class diagram - static depiction of objects as nodes and their

relations as edges
–  State diagram - models dynamic behavior of single objects using

a variant of a finite state machine representation. Nodes in
state diagram represent state of object, edges possible
transitions between states

–  Interaction diagrams - model sequence of messages in an
interaction among objects

•  Sequence diagrams emphasize time orderings
•  Collaboration diagrams emphasize objects and their relationships

relevant to a particular interaction

21
Will see this later with UML

OO Analysis and Design
Assumptions

•  Assumes a stable problem statement
–  Not strong on elicitation (but not weak either)
–  A collection of use cases are one view of the

software architecture of a system

22

CRC Cards

•  Class Responsibility Collaborator cards
•  Documents collaborative decisions - usually done in a

group, but useful individually
•  Very helpful in early stages of software development
•  Nice for small to medium size projects
•  One of the techniques to use, very useful - a winner!
•  Wilkinson, N. Using CRC Cards: An informal approach to

Object-Oriented development, Cambridge University
Press, 1995, ISBN: 0133746798

23

CRC Card

24

Class Name:
Superclasses:
Subclasses:

Responsibilities Collaborators

Analysis and Design Methods

•  Approach:
–  Identify the objects
–  Determine attributes and services
–  Determine relationships between objects

25

Identify the Objects
•  Look for important concepts from the application domain

–  Domain specific entities are prime candidates for objects
•  Real world objects - books
•  Roles played - customer
•  Organizational units - department
•  Locations
•  Devices

•  Look at existing classifications and assembly (whole, parts relationship)
–  Sometimes listing most of the nouns in the requirements specification

or the problem statement
–  Eliminate from the noun list implementation constructs
–  Vague terms replaced by concrete terms or eliminated
–  Eliminate synonymous terms
–  Demote some terms to attributes

•  Some information is from statement, some from tacit knowledge
•  Diagram starts with relationships and evolves to more detailed descriptions

(cardinality constraints and inheritance)

26

Identify Attributes and Services

•  Describe an instance of the object
–  The state of the object
–  Consider characteristics that distinguish instances but

are common properties of the objects
•  Look for atomic rather than composite attributes - compute

from atomic to composite if necessary
–  Services are related to life cycle and are usually verbs in

the description, e.g., book is acquired, borrowed,
returned, retired

•  Concern state of the object
•  Usage scenarios aid in discovery

27

Identify Relationships

•  Services are one way objects can be related
–  OO flavor comes from whole-part, gen/spec relationships
–  Consider similarities of objects as basis for specification of a

more general object
–  Publication is an abstract object, one that has no instances

•  Attributes and services defined at publication level constitute a
common interface for its descendants

–  Generalization/Specialization relationship can lift services to
higher levels in the hierarchy and they are represented by
virtual functions - services for which a default implementation
is provided and can be redefined by specializations

28

Initial Object Model (van Vliet)

29

library

computer

station employee

client

bar code reader

book copy id card

member-of

owns
owns

communicates
with

has-a

employs

operates

has

reads reads

Comments on OO Analysis and
Design

•  Instances of an object should have common attributes if not
repartition or reconsider

•  Over evolution/time, object hierarchy should remain stable
but attributes and services may change

•  OO can be considered a middle-out design method!
–  Set of objects constitute the middle design level

•  OO could prosper if there were a future where collections
of domain specific classes become available - domain
libraries - DIFFICULT

30

Design Patterns

•  Portland Design Repository - http://c2.com/ppr/
•  Motivation came from a “real” architect,

Christopher Alexander-
–  “Each pattern describes a problem which occurs over and

over again in our environment, and then describes the
core of the solution to that problem in such a way that
you can use this solution over a million times without ever
doing it the same way twice.”

–  Referring to buildings and towns, e.g. couple’s realm,
children’s realm, sleeping to the east, …

31

Couple’s Realm

•  Consists of following centers:
–  Bed Alcove
–  Couple’s Realm Main Area

•  Fireplace
•  Connects to Bed alcove, dressing room, Porch/balcony, still

pond, bathing room and its child centers
–  Dressing Room
–  Porch/Balcony

•  Connects to Bathing Room and Child Centers
•  http://www.simplybuilding.net/center/view/39

32

Categories of Patterns
•  Creational - abstract instantiation, strive for independence -

problem is creating a complex object.
–  Used to control creation of objects, including families of

objects. Often replace constructors.
•  Structural Patterns - how classes and objects are composed to

form larger structures--uses inheritance - problem is representing
a complex structure
–  Lists, collections and trees with convenient interfaces

•  Behavioral- algorithms and assignment of responsibility, describe
objects and communication - problem is representing behavior
–  -application behavior options at runtime

•  Pros, more flexibility
•  Cons, increased complexity and potential performance issues

33

OO Metrics

34

Source Metric OO Construct

Traditional Cyclomatic Complexity Method

Traditional Lines of Code Method

Traditional Comment Percentage Method

OO Weighted Methods per Class (WMC) Class/Method

OO Response for a Class (RFC) Class/Message

OO Lack of Cohesion of Methods (LCOM) Class/Cohesion

OO Coupling between Objects (CBO) Coupling

OO Depth of Inheritance Tree(DIT) Inheritance

OO Number of Children(NOC) Inheritance

OO Metrics
•  WMC (Weighted Methods per Class) is a measure of size of class, assumes larger

classes are less desirable - usually a count of the number of methods
•  RFC (Response For a Class) is number of methods in class + number of methods called

by each of these class methods where each method is counted once
•  LCOM (Lack of Cohesion of Methods)is number of disjoint sets of methods of a class,

any 2 methods in the same set share at least one local state variable, preferred value
is 0, cohesion metric

•  CBO (Coupling Between Objects) is coupling metric, 2 classes are coupled if a method
of one class uses a method or state variable of the other class, high values = tight
bindings, undesirable

–  Gradations
–  Law of Demeter - methods of a class should only depend on top level structure of

own class
•  DIT (Depth of Inheritance Tree) is the distance of the class from the root of the

tree. Language dependent
–  Strive for inheritance trees of medium height, not narrow and deep, not shallow

and broad
•  NOC (Number of Children)is number of immediate descendants of a class, large

number suggests improper abstraction

35

Non OO
metrics soon!

OO: Hype or Hammer?

•  OOA and OOD are similar with OOD adding implementation
specific classes, OOA should be problem oriented, OOD
should be solution oriented

•  Transition to OO takes time
•  Issues: handling of real time requirements, less mature,

measuring progress is hard, no good cost models, scalability
and interoperability with non OO systems pose problems

•  Traditional functional models are easier to understand by
the customer
–  Users do not think in objects they think in tasks - use cases as

a way to bridge this
•  BUT…

36

37

•  the UML = Unified Modeling Language
•  Actually the books we will be working with use either the UML or

code
•  In your efforts you can use any of these techniques, another such

as CRC cards or something you with which you are comfortable, just
so long as you describe it and are systematic in its use.

•  I provide a very basic introduction to the UML as a default
•  There is an object oriented bias in modern notations

•  Opinion: UML has run amok, specification is
400+ pages

The UML

38

•  Three Amigos: Grady Booch, James Rumbaugh & Ivar Jacobson
•  Merged their notations into the UML

•  Class Diagram - represents details of the class
•  Object Diagram - represents instance of a class
•  Use Case Diagram - description of system behavior from a user

standpoint
•  State Diagram - represents the current state of the object
•  Sequence Diagram - represents system over time
•  Activity Diagram - represents the sequence of an activity
•  Collaboration Diagram - represents interaction of elements
•  Component Diagram - represents a software component
•  Deployment Diagram - represents physical architecture of the system

What is the UML?

39

Class Diagram

40

Object Diagram

Inheritance

vehicle

car boat truck

41

42

Use Case Diagram

43

State Diagram

Add
Employee

Change
Field

Delete
Employee

44

Sequence Diagram

Objects

T
I
M
E

Interactions

45

Activity Diagram

46

Collaboration Diagram

47

Component Diagram

48

Deployment Diagram

Thought Problems

•  You are beginning an OO project, what analysis style would
you use, e.g., the UML, CRC cards, (your favorite method)?
Do you think it would depend on the size of the project?

•  What so you think are relevant criteria for deciding if you
should use OO methodology?

49

Thought Problem

•  You want to nurture architects in your
organization, what is a plan to do that and what
styles will you encourage?

•  You are asked to decide on a design strategy for
your company - will you go OO?

50

51

On managing software quality

Q

Peters & Waterman, In
Search of Excellence, a key
factor of successful
companies

52

On Quality

•  The cost of low quality ranges from dissatisfied customers
to costing lives.

•  Premise is that the quality of a product is largely based on
the Quality of the process that leads to the product.

•  We should strive to numerically describe quality - the other
Q - Quantitative, “from response time is very fast to an
average response time of < 1 second with no response taking
over 3 seconds.”

•  What Quality is differs by audience - each (tester, end user,
administrator) has their own perspective.

53

Approaches to Quality

Conform Improve

Product ISO 9126 Best Practices

Process ISO 9001
SQA

CMM
SPICE
Bootstrap

54

Approaches to Quality -2

•  TQM, Total Quality Management,
emphasizes the eclectic view, the pursuit
of excellence in everything

•  SQA - sees to it that the work is done the
way it should be done

•  CMM (and SPICE and Bootstrap) improves
the development process or the process to
improve the development process

Quality Activities

•  Quality assurance – organizational
processes and standards

•  Quality planning – processes and standards
selected for a particular product

•  Quality control – processes enacted to
ensure development team has followed
quality procedures and standards

55

56

On Quality

•  Quality is tough to measure but easy to recognize
(and there is agreement, inter rater reliability)

•  IEEE defines it as “the degree to which a system,
computation or process meets customer or user
needs and expectations”

•  Perspectives:
–  User: degree to which requirements are met:

correctness, reliability, usability, …
–  Customer: factors relating to the structure of the

system: maintainability, testability, portability

57

McCall’s Taxonomies
•  (taxonomies are common in the early stages of a science)
•  High level Q Factors, external attributes that are measured

indirectly, and Q Criteria measure subjectively or hopefully
objectively. By combining Q Criteria one measures the Q
Factor. Subjective measures can be decomposed even
further to find an objective base

•  3 classes of Q Factors: operation, revision and transition
•  Q factors are not independent

58

McCall Examples

•  Operation: Correctness (completeness &
consistency), Usability (communicativeness,
operability & training)

•  Revision: Maintainability(conciseness, consistency,
modularity, self-documentation, simplicity)

•  Transition: Portability(hardware independence,
modularity, self-documentation, software system
independence)

59

ISO 9126

•  Another attempt to define Quality characteristics
and subcharacteristics

•  Addresses product not process
•  Only subcharacteristics visible to user
•  Provides metrics for each subcharacteristic
•  The current answer - develop your own based on

these and relevant to your needs but remember
that quality requirements that cannot be
measured cannot be controlled

60

ISO 9126

•  Characteristics and sample
subcharacteristics:
–  Functionality (suitability, security)
–  Reliability (fault tolerance)
–  Usability (understandability)
–  Efficiency (resource use)
–  Maintainability (changeability)
–  Portability (replaceability)

61

Garvin on Quality

•  5 perspectives/definitions of quality:
–  Transcendent, innate excellence, obvious
–  User based, fitness for use, addresses needs

(acceptance test)
–  Product based quality as in ISO 9126
–  Manufacturing based - conformance to specs
–  Value based - show me the money

62

Pirsig
•  Zen and the Art of Motorcycle

Maintenance: An Inquiry Into Human
Values, Bantam Books, 1974. ISBN:
0-535-27747-2

http://www.virtualschool.edu/mon/Quality/PirsigZen/

63

TQM- Total Quality Management

•  Stresses improvement rather than conformance,
CMM builds on TQM

•  3 principles:
–  Customer value strategy - benefits vs sacrifices caused

by the product
–  Organizational system - eliminate complexity not people,

people are a critical resource and focuses on how
software melds with organizational practices

–  Continuous improvement - proactively based rather than
reactively based.

64

TQM

65

ISO Quality System

•  ISO set up a series of standards for quality management
•  ISO 9001 most suited for software - model for quality

assurance in design, development, production, installation and
servicing

•  ISO 9004-1 contains guidelines for individual elements of
various standards

•  ISO 9000 process includes third party auditor, with audits
every 6 months and reregistration every 3 years - expensive

•  Necessary for some customers

66

Software Quality Assurance
•  Basic idea: improve quality by monitoring software and its

development process
–  Ensure compliance with established standards
–  Ensure that inadequacies are brought to the managements

attention and fixed
–  The quality organization performs reviews and audits and must

be separate from production
–  Support of management, the QA organization must have go/no

go authority over the product
–  Must be technically competent

•  IEEE 730 provides a framework for Quality Assurance plan
•  IEEE 983 is a complement to 730 and offers further

guidelines including implementation, evaluation and
modification.

NSA and Assurance

•  Brian Snow -
http://www.acsa-admin.org/2005/papers/
Snow.pdf

•  Some highlights
–  Very strong use of formal methods, SEI level

5,TSP and PSP
–  Mutual suspicion – modules auditing and

alarming each other’s behavior – same with
developers!

67

68

IEEE 730

•  Purpose
•  Reference documents
•  Management
•  Documentation
•  Standards, practices,

conventions and metrics
•  Reviews and audits
•  Test

•  Problem reporting and
corrective action

•  Tools, techniques and
methodologies

•  Code control
•  Media control
•  Supplier control
•  Records collection,

maintenance and retention
•  Training
•  Risk management

69

CMM and others

•  CMM - been there done that
•  BOOTSTRAP - separate maturity rating

for each of its practices
•  SPICE (ISO/IEC 15504) - international

initiative Software Process Improvement
and Capability dEtermination

70

QAW
•  Quality Attributes Workshop - facilitated method engaging

stakeholders early to discover driving Quality attributes of a
software intensive system
–  Results in creation of prioritized and refined scenarios
–  Provides description of Quality requirements before architecture is

developed
–  It is system centric and stakeholder focused, done before software

architecture is created
•  Critical Quality attribute must be articulated and well understood

early so it influences architecture - move to the left!
•  Quality attribute examples: security, reliability, modifiability,

performance, interoperability, portability

71

View of Traditional System
Development

•  Operational Descriptions
•  High Lev Functional Requirements

–  Legacy Systems
–  New Systems

•  A Miracle Occurs - Quality attributes are often missing
from requirements document or, at best, vaguely understood
and described

•  Specific System Architecture
•  Software Architecture
•  Detailed design
•  Implementation

72

QAW-2

•  Motivation is to not rely on the miracle but
clearly articulate what is needed by
scenarios describing the stimulus,
describes agent or factor that initiates
system to react and a response, the
systems reaction to the stimulus. Including
the environment, the context (e.g. peak
load, normal operation, maintenance mode).

73

Steps of QAW

•  Step 1 - QAW presentation - description and participant
introduction
–  5 to 30 stakeholders

•  Stakeholders = usual suspects = end users, installers, administrators,
trainers, architects, system and software engineers.

•  Step 2 - Stakeholders present systems business/mission context,
including high level requirements, constraints and identified Quality
attributes

•  Step 3 - Architecture Plan presentation: notional, preliminary
architecture describing how requirements will be satisfied, key
technical requirements and constraints and description of the
system environment

74

Steps of QAW-2

•  Step 4 - Identification of Architectural Drivers - facilitators
summarize these from presentations in Steps 2&3, ask
stakeholders for clarification, additions & deletions. Results in final
list of Quality attributes to drive scenario stage.

•  Step 5 - Scenario Brainstorming, stakeholders generate scenarios,
each stakeholder contributes 2, facilitators assure at least one
scenario for each Quality attribute driver of Step 4. The Quality
attributes are operationally defined by these scenarios, hopefully,
avoiding ambiguity of vocabulary.

75

Steps of QAW-3

•  Step 6 - Scenario Consolidation, similar scenarios
are consolidated

•  Step 7 - Scenario Prioritization, each stakeholder
has N votes (N = 30% of # of scenarios), 2
passes, 1/2 of votes on each pass

•  Step 8 - Scenario Refinement, work hard on
clarifying descriptions of highly rated scenarios,
including describing business/mission goals
affected by scenario and describing relevant
Quality attributes

76

Example Scenario

•  Scenario - when a garage door opener senses object in door’s path,
stops door in less than 1 msec.

•  Business Goals - safest system; feature rich product
•  Quality Attributes: safety, performance
•  Stimulus - object in path of garage door
•  Stimulus Source - object external to system, bicycle
•  Environment - garage door is closing
•  Artifact - system motion sensor & motion control software
•  Response measure - 1 msec
•  Questions - How large must an object be before detected
•  Issues - train installers to prevent malfunctions

77

QAW Benefits

•  Increased stakeholder communication
•  Informed basis for architectural decisions
•  Improved architectural documentation
•  Support for analysis and testing

throughout life of the system

78

Metrics

•  Project: metrics used specifically but not
solely by management to control current
projects and provide feedback for future
projects

•  Technical (Individual?): used by an
engineers to improve their performance

79

Technical/Individual Metrics

•  Halstead
•  McCabe
•  Fan-in/Fan-out

80

Halstead -”software science”

•  Stresses syntactic units rather than LOC
•  Model components:

–  Operators - actions: +, -, *, /, if-then-else,…
–  Operands - data: variables and constants
–  4 basic entities (used in a bunch of equations)

•  n1 - # of different operators
•  n2 - # of different operands
•  N1 - total occurrences of operators
•  N2 - total occurrences of operands

–  Length of Program for Halstead: N = N1 + N2

81

Halstead uses

•  Simple to calculate, no in-depth examination of structure
•  Measure of overall quality of programs - simplicity/bloat

criteria
•  In conjunction with others, helpful in maintenance and initial

programming
•  Substantial literature
•  At surface level requires completed code so not good in

estimation but with certain assumptions N can be calculated
early on

•  Does not account for complexity of interfaces

82

McCabe’s Cyclomatic Complexity

•  Based on a directed graph showing control flow of
program thereby showing the number of
independent paths in the program

•  Cyclomatic Complexity, CV= e - n + p + 1 where:
–  e = # of edges
–  n = # of nodes
–  p = # of connected components (1 for main program 1 for

each procedure)
•  10 should be upper limit of complexity for a

component according to McCabe

Eclipse metrics plugin

83

McCabe Uses

•  Great for testing because it uncovers all linearly
independent paths

•  Does not add more complexity to nested loops and
in general does not consider context

•  Unlike Halstead does take into account control
flow complexity, but not data therefore, often
used together

•  Useful for individual developer feedback and
during maintenance

84

Fan In/Fan Out

•  Measures interaction - basically, # of modules
that call a given module and number of modules
called by a given module.

•  High degrees of fan-in/fan-out are undesirable
•  Typical equations: [LOC|Cyclomatic complexity]*

(#fan-in*#fan-out)2
•  Takes into account data driven programs but

underestimates (of course) complexity for
programs/modules with little interaction

Quality Universe
Sommerville p.667

85

86

Reality Check

•  The business is software, danger of a shift
from developing software to developing
processes, but …

•  Quality is recognizable

87

Configuration Management
the problem

•  Not a simple task!
–  Different versions of software usually is in the field

during the life cycle
–  Different parts of the team are on different versions of

the software and documents
–  The same release of a software product may have

multiple versions consisting of different combinations of
software components

•  Configuration management is both a development
and production issue

88

The Baseline

•  IEEE - “reviewed and agreed upon basis for further
development which can be changed only through formal
control procedures”

•  Contained in the baseline are configuration items: source,
objects, requirements (p.75)

•  Configuration management maintains integrity of these
artifacts

•  Major error- retrace steps through code, design documents
and requirements specification -TRACEABILITY

89

Workflow of CR (MR)

Investigate CR

Prepare & sched
 work package

Implement change

Updated configuration items

Prioritized work package

Change approved

Change Request

rejected

Notify CR owner

Request info from
CR owner

Deferred

90

Configuration Management Tools
•  Manage the workflow of CRs
•  If item is to be changed, developer checks it out and item is

locked to other users
•  When item check back in revision history is stored
•  All versions are recoverable
•  Should be able to accommodate branching - necessary more

times than you think!
•  Configuration management tools are very sophisticated,

keeps only the changes, the deltas and the remarks,
timestamps and who did what - essential for Buildmeister
and testers

•  New tools are change oriented release configuration is
identified by a baseline plus a set of changes.

91

Configuration Management Plan

•  Main parts:
–  Management: how project is organized and who

has responsibilities related to configuration
management. How are change requests
handled?

–  Activities:
•  Who is on CCB, what are their responsibilities
•  What reports are required
•  What data is collected and archived - IMPORTANT

Bugzilla

92

References

•  Futrell, Shafer & Shafer, Quality software project management,
Prentice Hall, 2002, ISBN 0-13-091297-2

•  Robertson, S. and Robertson, J., Mastering the requirements
process, 1999, Addison-Wesley.

•  Endres, A. and Rombach, D. A handbook of software and systems
engineering. 2003, Addison-Wesley.

•  Wirfs-Brock and Schwartz -
http://www.wirfsbrock.com/pages/resources/pdf/
the_art_of_writing_use_cases_slides_and_notes.pdf

•  Others embedded in text

93

